Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A universal approach for the synthesis of mesoporous gold, palladium and platinum films for applications in electrocatalysis


High-surface-area mesoporous materials expose abundant functional sites for improved performance in applications such as gas storage/separation, catalysis, and sensing. Recently, soft templates composed of amphiphilic surfactants and block copolymers have been used to introduce mesoporosity in various materials, including metals, metal oxides and carbonaceous compounds. In particular, mesoporous metals are attractive in electrocatalysis because their porous networks expose numerous unsaturated atoms on high-index facets that are highly active in catalysis. In this protocol, we describe how to create mesoporous metal films composed of gold, palladium, or platinum using block copolymer micelle templates. The amphiphilic block copolymer micelles are the sacrificial templates and generate uniform structures with tunable pore sizes in electrodeposited metal films. The procedure describes the electrodeposition in detail, including parameters such as micelle diameters, deposition potentials, and deposition times to ensure reproducibility. The micelle diameters can be controlled by swelling the micelles with different solvent mixtures or by using block copolymer micelles with different molecular weights. The deposition potentials and deposition times allow further control of the mesoporous structure and its thickness, respectively. Procedures for example applications are included: glucose oxidation, ethanol oxidation and methanol oxidation reactions. The synthetic methods for preparation of mesoporous metal films will take ~4 h; the subsequent electrochemical tests will take ~5 h for glucose sensing and ~3 h for alcohol oxidation reaction.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Pictures of the whole mesoporous fabrication process.
Fig. 2: Schematic illustrations of the whole mesoporous fabrication process from micelle formation to mesoporous metal formation.
Fig. 3: Process flow used to determine the diameter distributions of block copolymer micelles.
Fig. 4: Thickness and ECSA changes with deposition times.
Fig. 5
Fig. 6: Dependence of pore size distribution of MGFs on hydrophobic organic compound.
Fig. 7: Dependence of pore size distributions in the MGFs on the molecular weights of the block copolymers.
Fig. 8
Fig. 9: Pore size distributions of MPdFs using block copolymers with different molecular weights.
Fig. 10: Pore size distributions of MPtFs using block copolymers with different molecular weights.
Fig. 11: Glucose sensing using MGFs.
Fig. 12: The results of EOR and MOR applications using MPdFs and MPtFs.


  1. 1.

    Shin, H. J., Ryoo, R., Liu, Z. & Terasaki, O. Template synthesis of asymmetrically mesostructured platinum networks. J. Am. Chem. Soc. 123, 1246–1247 (2001).

    CAS  Google Scholar 

  2. 2.

    Liu, Z. et al. TEM studies of platinum nanowires fabricated in mesoporous silica MCM-41. Angew. Chem. Int. Ed. 39, 3107–3110 (2000).

    CAS  Google Scholar 

  3. 3.

    Takai, A., Doi, Y., Yamauchi, Y. & Kuroda, K. Soft-chemical approach of noble metal nanowires templated from mesoporous silica (SBA-15) through vapor infiltration of a reducing agent. J. Phys. Chem. C. 114, 7586–7593 (2010).

    CAS  Google Scholar 

  4. 4.

    Doi, Y. et al. Tailored synthesis of mesoporous platinum replicas using double gyroid mesoporous silica (KIT-6) with different pore diameters via vapor infiltration of a reducing agent. Chem. Commun. 46, 6365–6367 (2010).

    CAS  Google Scholar 

  5. 5.

    Guo, X.-J., Yang, C.-M., Liu, P.-H., Cheng, M.-H. & Chao, K.-J. Formation and growth of platinum nanostructures in cubic mesoporous silica. Cryst. Growth Des. 5, 33–36 (2005).

    CAS  Google Scholar 

  6. 6.

    Kuroda, Y., Yamauchi, Y. & Kuroda, K. Integrated structural control of cage-type mesoporous platinum possessing both tunable large mesopores and variable surface structures by block copolymer-assisted Pt deposition in a hard-template. Chem. Commun. 46, 1827–1829 (2010).

    CAS  Google Scholar 

  7. 7.

    Attard, G. S. et al. Mesoporous platinum films from lyotropic liquid crystalline phases. Science 278, 838–840 (1997).

    CAS  Google Scholar 

  8. 8.

    Attard, G. S., Corker, J. M., Göltner, C. G., Henke, S. & Templer, R. H. Liquid-crystal templates for nanostructured metals. Angew. Chem. Int. Ed. 36, 1315–1317 (1997).

    CAS  Google Scholar 

  9. 9.

    Elliott, J. M., Birkin, P. R., Bartlett, P. N. & Attard, G. S. Platinum microelectrodes with unique high surface areas. Langmuir 15, 7411–7415 (1999).

    CAS  Google Scholar 

  10. 10.

    Bartlett, P. N., Pletcher, D., Esterle, T. F. & John Low, C. T. The deposition of mesoporous Ni/Co alloy using cetyltrimethylammonium bromide as the surfactant in the lyotropic liquid crystalline phase bath. J. Electroanal. Chem. 688, 232–236 (2013).

    CAS  Google Scholar 

  11. 11.

    Thepkaew, J., Therdthianwong, S., Kucernak, A. & Therdthianwong, A. Electrocatalytic activity of mesoporous binary/ternary PtSn-based catalysts for ethanol oxidation. J. Electroanal. Chem. 685, 41–46 (2012).

    CAS  Google Scholar 

  12. 12.

    Li, C. et al. Electrochemical synthesis of mesoporous gold films toward mesospace-stimulated optical properties. Nat. Commun. 6, 6608 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Jiang, B. et al. Tunable‐sized polymeric micelles and their assembly for the preparation of large mesoporous platinum nanoparticles. Angew. Chem. Int. Ed. 55, 10037–10041 (2016).

    CAS  Google Scholar 

  14. 14.

    Kang, Y. et al. Mesoporous PtCu alloy nanoparticles with tunable compositions and particles sizes using diblock copolymer micelle templates. Chem. Eur. J. 25, 343–348 (2019).

    CAS  PubMed  Google Scholar 

  15. 15.

    Jiang, B. et al. Mesoporous metallic rhodium nanoparticles. Nat. Commun. 8, 15581 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Iqbal, M. et al. Continuous mesoporous Pd films by electrochemical deposition in nonionic micellar solution. Chem. Mater. 29, 6405–6413 (2017).

    CAS  Google Scholar 

  17. 17.

    Li, C. et al. First synthesis of continuous mesoporous copper films with uniformly sized pores by electrochemical soft templating. Angew. Chem. 128, 12938–12942 (2016).

    Google Scholar 

  18. 18.

    Iqbal, M. et al. Standing mesochannels: mesoporous PdCu films with vertically aligned mesochannels from nonionic micellar solutions. ACS Appl. Mater. Interfaces 10, 40623–40630 (2018).

    CAS  PubMed  Google Scholar 

  19. 19.

    Tang, J., Liu, J., Torad, N. L., Kimura, T. & Yamauchi, Y. Tailored design of functional nanoporous carbon materials toward fuel cell applications. Nano Today 9, 305–323 (2014).

    CAS  Google Scholar 

  20. 20.

    Jiang, B. et al. Layer-by-layer motif architectures: programmed electrochemical syntheses of multilayer mesoporous metallic films with uniformly sized pores. Angew. Chem. 129, 7944–7949 (2017).

    Google Scholar 

  21. 21.

    Sun, Y. et al. Defects and interfaces on PtPb nanoplates boost fuel cell electrocatalysis. Small 14, 1702259 (2018).

    Google Scholar 

  22. 22.

    Li, Y. et al. Polymeric micelle assembly for the smart synthesis of mesoporous platinum nanospheres with tunable pore sizes. Angew. Chem. Int. Ed. 54, 11073–11077 (2015).

    CAS  Google Scholar 

  23. 23.

    Jiang, B. et al. Mesoporous Pt nanospheres with designed pore surface as highly active electrocatalyst. Chem. Sci. 7, 1575–1581 (2016).

    CAS  PubMed  Google Scholar 

  24. 24.

    Jiang, B., Li, C., Imura, M., Tang, J. & Yamauchi, Y. Multimetallic mesoporous spheres through surfactant‐directed synthesis. Adv. Sci. 2, 1500112 (2015).

    Google Scholar 

  25. 25.

    Wang, L. & Yamauchi, Y. Metallic nanocages: synthesis of bimetallic Pt–Pd hollow nanoparticles with dendritic shells by selective chemical etching. J. Am. Chem. Soc. 135, 16762–16765 (2013).

    CAS  PubMed  Google Scholar 

  26. 26.

    Eid, K. et al. One-step synthesis of porous bimetallic PtCu nanocrystals with high electrocatalytic activity for methanol oxidation reaction. Nanoscale 7, 16860–16866 (2015).

    CAS  PubMed  Google Scholar 

  27. 27.

    Jiang, B., Li, C., Malgras, V. & Yamauchi, Y. Synthesis of ternary PtPdCu spheres with three-dimensional nanoporous architectures toward superior electrocatalysts. J. Mater. Chem. A 3, 18053–18058 (2015).

    CAS  Google Scholar 

  28. 28.

    Deng, K. et al. PtPdRh mesoporous nanospheres: an efficient catalyst for methanol electro-oxidation. Langmuir 35, 413–419 (2018).

    Google Scholar 

  29. 29.

    Li, C. et al. Pore-tuning to boost the electrocatalytic activity of polymeric micelle-templated mesoporous Pd nanoparticles. Chem. Sci. 10, 4054–4061 (2019).

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Lv, H. et al. Size-dependent synthesis and catalytic activities of trimetallic PdAgCu mesoporous nanospheres in ethanol electrooxidation. Chem. Sci. 10, 1986–1993 (2019).

    CAS  PubMed  Google Scholar 

  31. 31.

    Lv, H., Lopes, A., Xu, D. & Liu, B. Multimetallic hollow mesoporous nanospheres with synergistically structural and compositional effects for highly efficient ethanol electrooxidation. ACS Cent. Sci. 4, 1412–1419 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Li, C. et al. Superior electrocatalytic activity of mesoporous Au film templated from diblock copolymer micelles. Nano Res. 9, 1752–1762 (2016).

    CAS  Google Scholar 

  33. 33.

    Kani, K. et al. Electrochemical supermolecular templating of mesoporous Rh films. Nanoscale 11, 10581–10588 (2019).

    CAS  Google Scholar 

  34. 34.

    Li, C. et al. Surfactant-directed synthesis of mesoporous Pd films with perpendicular mesochannels as efficient electrocatalysts. J. Am. Chem. Soc. 137, 11558–11561 (2015).

    CAS  PubMed  Google Scholar 

  35. 35.

    Iqbal, M. et al. Continuous mesoporous Pd films with tunable pore sizes through polymeric micelle-assisted assembly. Nanoscale Horiz. 4, 960–968 (2019).

    CAS  Google Scholar 

  36. 36.

    Li, C., Wang, H. & Yamauchi, Y. Electrochemical deposition of mesoporous Pt–Au alloy films in aqueous surfactant solutions: towards a highly sensitive amperometric glucose sensor. Chem. Eur. J. 19, 2242–2246 (2013).

    CAS  PubMed  Google Scholar 

  37. 37.

    Ma, L. et al. Mesoporous bimetallic PtPd nanoflowers as a platform to enhance electrocatalytic activity of acetylcholinesterase for organophosphate pesticide detection. Electroanalysis 30, 1801–1810 (2018).

    Google Scholar 

  38. 38.

    Chang, F.-C., Li, Y.-C., Wu, R.-J. & Chen, C.-H. Pt–Pd floating nanoarrays templated on pluronic F127 micelles as effective surface-enhanced Raman scattering sensors. ACS Appl. Nano Mater. 2, 2515–2524 (2019).

    CAS  Google Scholar 

  39. 39.

    Libera, M. R. & Egerton, R. F. Advances in the transmission electron microscopy of polymers. Polym. Rev. 50, 321–339 (2010).

    CAS  Google Scholar 

  40. 40.

    Patterson, J. P. et al. The analysis of solution self-assembled polymeric nanomaterials. Chem. Soc. Rev. 43, 2412–2425 (2014).

    CAS  PubMed  Google Scholar 

  41. 41.

    Balcerzak, M. Sample digestion methods for the determination of traces of precious metals by spectrometric techniques. Anal. Sci. 18, 737–750 (2002).

    CAS  PubMed  Google Scholar 

  42. 42.

    Nugraha, A. S. et al. Block-copolymer-assisted electrochemical synthesis of mesoporous gold electrodes: towards a non-enzymatic glucose sensor. ChemElectroChem 4, 2571–2576 (2017).

    CAS  Google Scholar 

  43. 43.

    Liang, Z., Zhao, T., Xu, J. & Zhu, L. Mechanism study of the ethanol oxidation reaction on palladium in alkaline media. Electrochim. Acta 54, 2203–2208 (2009).

    CAS  Google Scholar 

Download references


H.L. and K.K. are funded by The University of Queensland Research and Training Program. This work was performed in part at the Queensland node of the Australian National Fabrication Facility (ANFF-Q), a company established under the National Collaborative Research Infrastructure Strategy to provide nano- and micro-fabrication facilities for Australia’s researchers. The authors acknowledge the facilities, and the scientific and technical assistance, of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy and Microanalysis, The University of Queensland. This work is also supported by the Korea Institute of Industrial Technology (KITECH, JE200017).

Author information




Y.Y. and J.N. proposed the research direction and guided the project. Y.Y., J.N., and Y.B. developed the protocol. H.L. and K.K. performed the experiments. H.L., K.K., and J.H. drafted the manuscript. J.H., T.N., A.S.N., Y.S.O., and K.C.W.W. analyzed morphologies. M.I., M.S.A.H., A.E.R., and H.-J.K. did formal analysis. All authors contributed to the manuscript.

Corresponding authors

Correspondence to Jongbeom Na or Yusuke Yamauchi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Xiaoguo Liu, Liang Wang and Dongyuan Zhao for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Li, C. et. al. Nat. Commun. 6, 6608 (2015):

Iqbal, M. et. al. Nanoscale Horiz. 4, 960–968 (2019):!divAbstract

Nugraha, A. S., et. al. ChemElectroChem 4, 2571–2576 (2017):

Key data used in this protocol

Li, C. et. al. Nat. Commun. 6, 6608 (2015):

Supplementary information

Supplementary Information

Supplementary Table 1 and Supplementary Figs. 1 and 2.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lim, H., Kani, K., Henzie, J. et al. A universal approach for the synthesis of mesoporous gold, palladium and platinum films for applications in electrocatalysis. Nat Protoc 15, 2980–3008 (2020).

Download citation


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing