Spatially resolved analysis of FFPE tissue proteomes by quantitative mass spectrometry

Abstract

Bottom-up mass spectrometry–based proteomics relies on protein digestion and peptide purification. The application of such methods to broadly available clinical samples such as formalin-fixed and paraffin-embedded (FFPE) tissues requires reversal of chemical crosslinking and the removal of reagents that are incompatible with mass spectrometry. Here, we describe in detail a protocol that combines tissue disruption by ultrasonication, heat-induced antigen retrieval and two alternative methods for efficient detergent removal to enable quantitative proteomic analysis of limited amounts of FFPE material. To show the applicability of our approach, we used hepatocellular carcinoma (HCC) as a model system. By combining the described protocol with laser-capture microdissection, we were able to quantify the intra-tumor heterogeneity of a tumor specimen on the proteome level using a single slide with tissue of 10-µm thickness. We also demonstrate broader applicability to other tissues, including human gallbladder and heart. The procedure described in this protocol can be completed within 8 d.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Workflow for the proteomic analysis of microdissected FFPE specimens by quantitative mass spectrometry.
Fig. 2: Laser-capture microdissection of a hepatocellular carcinoma specimen and analysis by label-free quantitative mass spectrometry.
Fig. 3: Subsequent pooling of fractions from high-pH separation.
Fig. 4: Reproducible protein quantification from FFPE slides obtained from different tissues.
Fig. 5: Immunohistochemical validation of spatial proteomic data obtained from an FFPE tumor specimen.

Data availability

TMT and DIA data of the HCC samples shown in Figs. 4 and 5 are available via the ProteomeXchange Consortium (http://www.proteomexchange.org/) or the PRIDE Proteomics Identification Database (https://www.ebi.ac.uk/pride/) with the dataset identifier PXD007052. Lists of proteins identified in the experiments shown in Fig. 4 are provided in Supplementary Table 1. Raw data for gallbladder (Fig. 4e) and heart (Fig. 4f) samples are available from the authors upon request.

References

  1. 1.

    Doll, S., Gnad, F. & Mann, M. The case for proteomics and phospho-proteomics in personalized cancer medicine. Proteom. Clin. Appl 13, 1–10 (2019).

    Google Scholar 

  2. 2.

    Mertins, P. et al. Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55–62 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Drummond, E. S., Nayak, S., Ueberheide, B. & Wisniewski, T. Proteomic analysis of neurons microdissected from formalin-fixed, paraffin-embedded Alzheimer’s disease brain tissue. Sci. Rep. 5, 15456 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Liu, A. Laser capture microdissection in the tissue biorepository. J. Biomol. Tech. 21, 120–125 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Ostasiewicz, P., Zielinska, D. F., Mann, M. & Wiśniewski, J. R. Proteome, phosphoproteome, and N-glycoproteome are quantitatively preserved in formalin-fixed paraffin-embedded tissue and analyzable by high-resolution mass spectrometry. J. Proteome Res. 9, 3688–3700 (2010).

    CAS  PubMed  Google Scholar 

  6. 6.

    Wiśniewski, J. R., Ostasiewicz, P. & Mann, M. High recovery FASP applied to the proteomic analysis of microdissected formalin fixed paraffin embedded cancer tissues retrieves known colon cancer markers. J. Proteome Res. 10, 3040–3049 (2011).

    PubMed  Google Scholar 

  7. 7.

    Karlsson, C. & Karlsson, M. G. Effects of long-term storage on the detection of proteins, DNA, and mRNA in tissue microarray slides. J. Histochem. Cytochem. 59, 1113–1121 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Föll, M. C. et al. Reproducible proteomics sample preparation for single FFPE tissue slices using acid-labile surfactant and direct trypsinization. Clin. Proteom. 15, 11 (2018).

    Google Scholar 

  9. 9.

    Bayer, M., Angenendt, L., Schliemann, C., Hartmann, W. & König, S. Are formalin-fixed and paraffin-embedded tissues fit for proteomic analysis? J. Mass Spectrom. https://doi.org/10.1002/jms.4347 (2019).

  10. 10.

    Longuespée, R. et al. A laser microdissection-based workflow for FFPE tissue microproteomics: important considerations for small sample processing. Methods 104, 154–162 (2016).

    PubMed  Google Scholar 

  11. 11.

    Marakalala, M. J. et al. Inflammatory signaling in human tuberculosis granulomas is spatially organized. Nat. Med 22, 531–538 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Davis, S., Scott, C., Ansorge, O. & Fischer, R. Development of a sensitive, scalable method for spatial, cell-type-resolved proteomics of the human brain. J. Proteome Res. 18, 1787–1795 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Guo, T. et al. Multi-region proteome analysis quantifies spatial heterogeneity of prostate tissue biomarkers. Life Sci. Alliance 1, e201800042 (2018).

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Buczak, K. et al. Spatial tissue proteomics quantifies inter- and intratumor heterogeneity in hepatocellular carcinoma (HCC). Mol. Cell. Proteom. 17, 810–825 (2018).

    CAS  Google Scholar 

  15. 15.

    Wiśniewski, J. R. et al. Absolute proteome analysis of colorectal mucosa, adenoma, and cancer reveals drastic changes in fatty acid metabolism and plasma membrane transporters. J. Proteome Res. 14, 4005–4018 (2015).

    PubMed  Google Scholar 

  16. 16.

    Shi, S. R., Key, M. E. & Kalra, K. L. Antigen retrieval in formalin-fixed, paraffin-embedded tissues: an enhancement method for immunohistochemical staining based on microwave oven heating of tissue sections. J. Histochem. Cytochem. 39, 741–748 (1991).

    CAS  PubMed  Google Scholar 

  17. 17.

    Hughes, C. S. et al. Ultrasensitive proteome analysis using paramagnetic bead technology. Mol. Syst. Biol. 10, 757 (2014).

    PubMed  Google Scholar 

  18. 18.

    Hughes, C. S. et al. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat. Protoc. 14, 68–85 (2019).

    CAS  PubMed  Google Scholar 

  19. 19.

    Sielaff, M. et al. Evaluation of FASP, SP3, and iST Protocols for proteomic sample preparation in the low microgram range. J. Proteome Res. 16, 4060–4072 (2017).

    CAS  PubMed  Google Scholar 

  20. 20.

    Hughes, C. S. et al. Quantitative profiling of single formalin fixed tumour sections: proteomics for translational research. Sci. Rep. 6, 34949 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Müller, T. et al. Automated sample preparation with SP 3 for low‐input clinical proteomics. Mol. Syst. Biol. 16, 1–19 (2020).

    Google Scholar 

  22. 22.

    Heinze, I. et al. Species comparison of liver proteomes reveals links to naked mole-rat longevity and human aging. BMC Biol. 16, 82 (2018).

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Thompson, A. et al. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem. 75, 1895–1904 (2003).

    CAS  PubMed  Google Scholar 

  24. 24.

    Gillet, L. C. et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol. Cell. Proteom. 11, O111.016717 (2012).

    Google Scholar 

  25. 25.

    Jackson, H. W. et al. The single-cell pathology landscape of breast cancer. Nature 578, 615–620 (2020).

    CAS  PubMed  Google Scholar 

  26. 26.

    Ijsselsteijn, M. E., van der Breggen, R., Farina Sarasqueta, A., Koning, F. & de Miranda, N. F. C. C. A 40-marker panel for high dimensional characterization of cancer immune microenvironments by imaging mass cytometry. Front. Immunol. 10, 1–8 (2019).

    Google Scholar 

  27. 27.

    Judd, A. M. et al. A recommended and verified procedure for in situ tryptic digestion of formalin-fixed paraffin-embedded tissues for analysis by matrix-assisted laser desorption/ionization imaging mass spectrometry. J. Mass Spectrom. 54, 716–727 (2019).

    CAS  PubMed  Google Scholar 

  28. 28.

    Li, J. et al. TMTpro reagents: a set of isobaric labeling mass tags enables simultaneous proteome-wide measurements across 16 samples. Nat. Methods 17, 399–404 (2020).

    CAS  PubMed  Google Scholar 

  29. 29.

    Muntel, J. et al. Comparison of Protein quantification in a complex background by DIA and TMT workflows with fixed instrument time. J. Proteome Res. 18, 1340–1351 (2019).

    CAS  PubMed  Google Scholar 

  30. 30.

    Bekker-Jensen, D. B. et al. Rapid and site-specific deep phosphoproteome profiling by data-independent acquisition without the need for spectral libraries. Nat. Commun. 11, 1–12 (2020).

    Google Scholar 

  31. 31.

    Huang, T. et al. Combining precursor and fragment information for improved detection of differential abundance in data independent acquisition. Mol. Cell. Proteom. 19, 421–430 (2020).

    CAS  Google Scholar 

  32. 32.

    Butler, S. L. et al. The antigen for Hep Par 1 antibody is the urea cycle enzyme carbamoyl phosphate synthetase 1. Lab. Invest. 88, 78–88 (2008).

    CAS  PubMed  Google Scholar 

  33. 33.

    Muntel, J. et al. Surpassing 10 000 identified and quantified proteins in a single run by optimizing current LC-MS instrumentation and data analysis strategy. Mol. Omi 15, 348–360 (2019).

    CAS  Google Scholar 

  34. 34.

    Skillbäck, T. et al. A novel quantification-driven proteomic strategy identifies an endogenous peptide of pleiotrophin as a new biomarker of Alzheimer’s disease. Sci. Rep. 7, 1–12 (2017).

    Google Scholar 

  35. 35.

    Brenes, A., Hukelmann, J., Bensaddek, D. & Lamond, A. I. Multibatch TMT reveals false positives, batch effects and missing values. Mol. Cell. Proteom. 18, 1967–1980 (2019).

    CAS  Google Scholar 

  36. 36.

    Bruderer, R. et al. Analysis of 1508 plasma samples by capillary-flow data-independent acquisition profiles proteomics of weight loss and maintenance. Mol. Cell. Proteom. 18, 1242–1254 (2019).

    CAS  Google Scholar 

  37. 37.

    Demichev, V., Messner, C. B., Vernardis, S. I., Lilley, K. S. & Ralser, M. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods 17, 41–44 (2020).

    CAS  PubMed  Google Scholar 

  38. 38.

    Tsou, C. C. et al. DIA-Umpire: comprehensive computational framework for data-independent acquisition proteomics. Nat. Methods 12, 258–264 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Röst, H. L. et al. OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat. Biotechnol. 32, 219–223 (2014).

    PubMed  Google Scholar 

  40. 40.

    Pino, L. K. et al. The Skyline ecosystem: Informatics for quantitative mass spectrometry proteomics. Mass Spectrom. Rev. 39, 229–244 (2020).

    CAS  PubMed  Google Scholar 

  41. 41.

    Viswanadhapalli, S. et al. Estrogen receptor coregulator binding modulator (ERX-11) enhances the activity of CDK4/6 inhibitors against estrogen receptor-positive breast cancers. Breast Cancer Res 21, 150 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Tran, N. H. et al. Deep learning enables de novo peptide sequencing from data-independent-acquisition mass spectrometry. Nat. Methods 16, 63–66 (2019).

    PubMed  Google Scholar 

  43. 43.

    Choi, M. et al. MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments. Bioinformatics 30, 2524–2526 (2014).

    CAS  PubMed  Google Scholar 

  44. 44.

    Gatto, L. & Lilley, K. S. MSnbase-an R/Bioconductor package for isobaric tagged mass spectrometry data visualization, processing and quantitation. Bioinformatics 28, 288–289 (2011).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge I. Heinze and the CF Proteomics of the FLI for technical support; members of the tissue bank of the National Center for Tumor disease (NCT) Heidelberg, in particular E. Herpel and V. Geissler, for their support; as well as J. Scheuerer for her support with the laser microdissection; and L. Reiter and J. Muntel for critical reading of the manuscript. M.B. acknowledges funding from the European Molecular Biology Laboratory and the Max Planck Society. L.F. acknowledges financial support from project ERAatUC, grant no. 669088, under the Horizon 2020 program of the European Commission. D.S. was supported by a PhD fellowship from the Portuguese Foundation for Science and Technology (FCT, PD/BD/106051/2015) under the Inter-University Doctoral Program in Aging and Chronic Diseases. S.R. acknowledges funding from the Wilhelm Sander-Stiftung (no. 2015.111.1) and was supported in part by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation; Project ID 314905040 – TRR 209 within Project B01). S.S. acknowledges funding from the DFG: SFB/TR209 (B04) and Si 1487/3-1, from the Hella-Buehler-Foundation and from an HRCMM (Heidelberg Research Center for Molecular Medicine) Career Development Fellowship. A.O. acknowledges funding from DFG via the Research Training Group ProMoAge (GRK 2155), the Else Kröner Fresenius Stiftung (award no. 2019_A79) and the Deutsches Zentrum für Herz-Kreislaufforschung (award no. 81X2800193). The FLI is a member of the Leibniz Association and is financially supported by the Federal Government of Germany and the State of Thuringia.

Author information

Affiliations

Authors

Contributions

Conceptualization: K.B., J.M.K., S.S., M.B., A.O. Data analysis: K.B., J.M.K., A.O. Investigation: K.B., J.M.K., F.T., D.S. Methodology: K.B., J.M.K., S.S., M.B., A.O. Project administration: M.B., A.O. Data analysis: K.B., J.M.K., A.O. Supervision: S.R., L.F., M.B., A.O. Visualization: K.B., A.O. Writing (original draft): K.B., J.M.K., M.B., A.O. Writing (review and editing): S.S.

Corresponding authors

Correspondence to Martin Beck or Alessandro Ori.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Buczak, K. et al. Mol. Cell. Proteomics 17, 810–825 (2018): https://www.mcponline.org/content/17/4/810.long

Heinze, I. et al. BMC Biol. 16, 82 (2018): https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-018-0547-y

Supplementary information

Reporting Summary

Supplementary Table 1

Proteins identified in the experiments shown in Fig. 4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Buczak, K., Kirkpatrick, J.M., Truckenmueller, F. et al. Spatially resolved analysis of FFPE tissue proteomes by quantitative mass spectrometry. Nat Protoc (2020). https://doi.org/10.1038/s41596-020-0356-y

Download citation

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.