Design, fabrication and applications of tetrahedral DNA nanostructure-based multifunctional complexes in drug delivery and biomedical treatment

Abstract

Although organic nanomaterials and inorganic nanoparticles possess inherent flexibility, facilitating functional modification, increased intracellular uptake and controllable drug release, their underlying cytotoxicity and lack of specificity still cause safety concerns. Owing to their merits, which include natural biocompatibility, structural stability, unsurpassed programmability, ease of internalization and editable functionality, tetrahedral DNA nanostructures show promising potential as an alternative vehicle for drug delivery and biomedical treatment. Here, we describe the design, fabrication, purification, characterization and potential biomedical applications of a self-assembling tetrahedral DNA nanostructure (TDN)–based multifunctional delivery system. First, relying on Watson-Crick base pairing, four single DNA strands form a simple and typical pyramid structure via one hybridization step. Then, the protocol details four different modification approaches, including replacing a short sequence of a single DNA strand by an antisense peptide nucleic acid, appending an aptamer to the vertex, direct incubation with small-molecular-weight drugs such as paclitaxel and wogonin and coating with protective agents such as cationic polymers. These modified TDN-based complexes promote the intracellular uptake and biostability of the delivered molecules, and show promise in the fields of targeted therapy, antibacterial and anticancer treatment and tissue regeneration. The entire duration of assembly and characterization depends on the cargo type and modification method, which takes from 2 h to 3 d.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic illustration of tetrahedral DNA nanostructure-based delivery systems and their biomedical applications.
Fig. 2: Illustration of the formation of TDNs, asPNA-TDNs and aptamer-modified TDNs.
Fig. 3: Characterization of asPNA-TDNs.
Fig. 4: Characterization of aptamer-modified TDNs.
Fig. 5: Characterization of small-molecular-weight drug-loading TDNs.
Fig. 6: Characterization of PEI/TDNs and PEGylated-protamine/TDNs.
Fig. 7: Biostability analysis of TDNs and aptamer-modified TDNs.
Fig. 8: Bacterial uptake of asPNA-TDNs.
Fig. 9: Aptamer-modified TDNs for cell targeting.
Fig. 10: In vitro biomedical effects of TDN-based delivery complexes.
Fig. 11: In vivo biomedical applications of TDNs and TDN-based delivery complexes.

Data availability

All data generated in this study can be obtained from the corresponding author upon reasonable request.

References

  1. 1.

    Seeman, N. C. Nucleic acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982).

    CAS  PubMed  Google Scholar 

  2. 2.

    Goodman, R. P. et al. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310, 1661–1665 (2005).

    CAS  PubMed  Google Scholar 

  3. 3.

    Bhatia, D. et al. Icosahedral DNA nanocapsules by modular assembly. Angew. Chem. Int. Ed. Engl. 48, 4134–4137 (2009).

    CAS  PubMed  Google Scholar 

  4. 4.

    Winfree, E., Liu, F. R., Wenzler, L. A. & Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998).

    CAS  PubMed  Google Scholar 

  5. 5.

    Ranallo, S., Porchetta, A. & Ricci, F. DNA-based scaffolds for sensing applications. Anal. Chem. 91, 44–59 (2018).

    PubMed  Google Scholar 

  6. 6.

    Patino, T. et al. Self-sensing enzyme-powered micromotors equipped with pH-responsive DNA nanoswitches. Nano Lett. 19, 3440–3447 (2019).

    CAS  PubMed  Google Scholar 

  7. 7.

    Chandrasekaran, A. R. Reconfigurable DNA nanoswitches for graphical readout of molecular signals. Chem. Biochem 19, 1018–1021 (2018).

    CAS  Google Scholar 

  8. 8.

    Xie, X. et al. Overcoming drug-resistant lung cancer by paclitaxel loaded tetrahedral DNA nanostructures. Nanoscale 10, 5457–5465 (2018).

    CAS  PubMed  Google Scholar 

  9. 9.

    Madhanagopal, B. R. et al. DNA nanocarriers: programmed to deliver. Trends Biochem. Sci. 43, 997–1013 (2018).

    CAS  PubMed  Google Scholar 

  10. 10.

    Liang, L. et al. Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells. Angew. Chem. Int. Ed. Engl. 53, 7745–7750 (2014).

    CAS  PubMed  Google Scholar 

  11. 11.

    Li, Q. et al. Aptamer-modified tetrahedral DNA nanostructure for tumor-targeted drug delivery. ACS Appl. Mater. Interfaces 9, 36695–36701 (2017).

    CAS  PubMed  Google Scholar 

  12. 12.

    Lee, H. et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat. Nanotechnol. 7, 389–393 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Zhang, Y. et al. Inhibiting methicillin-resistant Staphylococcus aureus by tetrahedral DNA nanostructure-enabled antisense peptide nucleic acid delivery. Nano Lett. 18, 5652–5659 (2018).

    CAS  PubMed  Google Scholar 

  14. 14.

    Walsh, A. S. et al. DNA cage delivery to mammalian cells. ACS Nano 5, 5427–5432 (2011).

    CAS  PubMed  Google Scholar 

  15. 15.

    Peng, Q. et al. Understanding the biomedical effects of the self-assembled tetrahedral DNA nanostructure on living cells. ACS Appl. Mater. Interfaces 8, 12733–12739 (2016).

    CAS  PubMed  Google Scholar 

  16. 16.

    Zhang, Q. et al. Anti-inflammatory and antioxidative effects of tetrahedral DNA nanostructures via the modulation of macrophage responses. ACS Appl. Mater. Interfaces 10, 3421–3430 (2018).

    CAS  PubMed  Google Scholar 

  17. 17.

    Xia, K. et al. Systematic study in mammalian cells showing no adverse response to tetrahedral DNA nanostructure. ACS Appl. Mater. Interfaces 10, 15442–15448 (2018).

    CAS  PubMed  Google Scholar 

  18. 18.

    Qin, X. et al. Tetrahedral framework nucleic acids prevent retina ischemia-reperfusion injury from oxidative stress via activating the Akt/Nrf2 pathway. Nanoscale 11, 20667–20675 (2019).

    CAS  PubMed  Google Scholar 

  19. 19.

    Liu, N. et al. Tetrahedral framework nucleic acids promote corneal epithelial wound healing in vitro and in vivo. Small 15, e1901907 (2019).

    PubMed  Google Scholar 

  20. 20.

    Li, J. et al. Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano 5, 8783–8789 (2011).

    CAS  PubMed  Google Scholar 

  21. 21.

    Shi, S. et al. Targeted and effective glioblastoma therapy via aptamer-modified tetrahedral framework nucleic acid-paclitaxel nanoconjugates that can pass the blood brain barrier. Nanomedicine 21, 102061 (2019).

    CAS  PubMed  Google Scholar 

  22. 22.

    Ma, W. et al. An intelligent DNA nanorobot with in vitro enhanced protein lysosomal degradation of HER2. Nano Lett. 19, 4505–4517 (2019).

    CAS  PubMed  Google Scholar 

  23. 23.

    Shi, S. et al. Effects of tetrahedral framework nucleic acid/wogonin complexes on osteoarthritis. Bone Res 8, 6 (2020).

    CAS  Google Scholar 

  24. 24.

    Tian, T. et al. Synthesis of an ethyleneimine/tetrahedral DNA nanostructure complex and its potential application as a multi-functional delivery vehicle. Nanoscale 9, 18402–18412 (2017).

    CAS  PubMed  Google Scholar 

  25. 25.

    Ge, Y. et al. PEGylated protamine-based adsorbing improves the biological properties and stability of tetrahedral framework nucleic acids. ACS Appl. Mater. Interfaces 11, 27588–27597 (2019).

    CAS  PubMed  Google Scholar 

  26. 26.

    Lin, M. et al. Electrochemical detection of nucleic acids, proteins, small molecules and cells using a DNA-nanostructure-based universal biosensing platform. Nat. Protoc. 11, 1244–1263 (2016).

    CAS  PubMed  Google Scholar 

  27. 27.

    Li, J., Fan, C., Pei, H., Shi, J. & Huang, Q. Smart drug delivery nanocarriers with self-assembled DNA nanostructures. Adv. Mater. 25, 4386–4396 (2013).

    CAS  PubMed  Google Scholar 

  28. 28.

    Crommelin, D. J. A., van Hoogevest, P. & Storm, G. The role of liposomes in clinical nanomedicine development. What now? Now what? J. Control. Release 318, 256–263 (2019).

    PubMed  Google Scholar 

  29. 29.

    Zhang, J., Song, S., Wang, L., Pan, D. & Fan, C. A gold nanoparticle-based chronocoulometric DNA sensor for amplified detection of DNA. Nat. Protoc. 2, 2888–2895 (2007).

    CAS  PubMed  Google Scholar 

  30. 30.

    Li, S. et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 36, 258–264 (2018).

    CAS  PubMed  Google Scholar 

  31. 31.

    Li, Y. G. et al. Controlled assembly of dendrimer-like DNA. Nat. Mater. 3, 38–42 (2004).

    CAS  PubMed  Google Scholar 

  32. 32.

    Zheng, J. et al. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 461, 74–77 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Lv, Y. et al. Preparation and biomedical applications of programmable and multifunctional DNA nanoflowers. Nat. Protoc. 10, 1508–1524 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Shih, W. M., Quispe, J. D. & Joyce, G. F. A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427, 618–621 (2004).

    CAS  PubMed  Google Scholar 

  35. 35.

    Chen, J. H. & Seeman, N. C. Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631–633 (1991).

    CAS  PubMed  Google Scholar 

  36. 36.

    Zhang, Y. & Seeman, N. C. Construction of a DNA-truncated octahedron. J. Am. Chem. Soc. 116, 1661–1669 (1993).

    Google Scholar 

  37. 37.

    Vindigni, G. et al. Receptor-mediated entry of pristine octahedral DNA nanocages in mammalian cells. ACS Nano 10, 5971–5979 (2016).

    CAS  PubMed  Google Scholar 

  38. 38.

    Zagorovsky, K., Chou, L. Y. & Chan, W. C. Controlling DNA-nanoparticle serum interactions. Proc. Natl Acad. Sci. USA 113, 13600–13605 (2016).

    CAS  PubMed  Google Scholar 

  39. 39.

    Simmel, S. S., Nickels, P. C. & Liedl, T. Wireframe and tensegrity DNA nanostructures. Acc. Chem. Res 47, 1691–1699 (2014).

    CAS  PubMed  Google Scholar 

  40. 40.

    Shao, X. et al. Neuroprotective effect of tetrahedral DNA nanostructures in a cell model of Alzheimer’s disease. ACS Appl. Mater. Interfaces 10, 23682–23692 (2018).

    CAS  PubMed  Google Scholar 

  41. 41.

    Larsen, H. J., Bentin, T. & Nielsen, P. E. Antisense properties of peptide nucleic acid. Biochim. Biophys. Acta 1489, 159–166 (1999).

    CAS  PubMed  Google Scholar 

  42. 42.

    Haydon, D. J. et al. An inhibitor of FtsZ with potent and selective anti-staphylococcal activity. Science 321, 1673–1675 (2008).

    CAS  PubMed  Google Scholar 

  43. 43.

    RayChaudhuri, D. & Park, J. T. Escherichia coli cell-division gene ftsZ encodes a novel GTP-binding protein. Nature 359, 251–254 (1992).

    CAS  PubMed  Google Scholar 

  44. 44.

    Lin, M. et al. Programmable engineering of a biosensing interface with tetrahedral DNA nanostructures for ultrasensitive DNA detection. Angew. Chem. Int. Ed. Engl. 54, 2151–2155 (2015).

    CAS  PubMed  Google Scholar 

  45. 45.

    Li, Z. et al. DNA nanostructure-based universal microarray platform for high-efficiency multiplex bioanalysis in biofluids. ACS Appl. Mater. Interfaces 6, 17944–17953 (2014).

    CAS  PubMed  Google Scholar 

  46. 46.

    Fu, W. et al. Enhanced efficacy of temozolomide loaded by a tetrahedral framework DNA nanoparticle in the therapy for glioblastoma. ACS Appl. Mater. Interfaces 11, 39525–39533 (2019).

    CAS  PubMed  Google Scholar 

  47. 47.

    Mahlknecht, G., Sela, M. & Yarden, Y. Aptamer targeting the ERBB2 receptor tyrosine kinase for applications in tumor therapy. Methods Mol. Biol. 1317, 3–15 (2015).

    PubMed  Google Scholar 

  48. 48.

    Yu, X. et al. Targeting EGFR/HER2/HER3 with a three-in-one aptamer-siRNA chimera confers superior activity against HER2(+) breast cancer. Mol. Ther. Nucleic Acids 10, 317–330 (2018).

    CAS  PubMed  Google Scholar 

  49. 49.

    Girvan, A. C. et al. AGRO100 inhibits activation of nuclear factor-kappaB (NF-kappaB) by forming a complex with NF-kappaB essential modulator (NEMO) and nucleolin. Mol. Cancer Ther. 5, 1790–1799 (2006).

    CAS  PubMed  Google Scholar 

  50. 50.

    Soundararajan, S. et al. The nucleolin targeting aptamer AS1411 destabilizes Bcl-2 messenger RNA in human breast cancer cells. Cancer Res 68, 2358–2365 (2008).

    CAS  PubMed  Google Scholar 

  51. 51.

    Krishna, A. G. et al. Taxol-DNA interactions: fluorescence and CD studies of DNA groove binding properties of taxol. Biochim. Biophys. Acta 1381, 104–112 (1998).

    CAS  PubMed  Google Scholar 

  52. 52.

    Ouameur, A. A. et al. Taxol interaction with DNA and RNA—Stability and structural features. Can. J. Chem. 82, 1112–1118 (2004).

    CAS  Google Scholar 

  53. 53.

    Rusak, G. et al. Spectrophotometric analysis of flavonoid-DNA interactions and DNA damaging/protecting and cytotoxic potential of flavonoids in human peripheral blood lymphocytes. Chem. Biol. Interact. 188, 181–189 (2010).

    CAS  PubMed  Google Scholar 

  54. 54.

    Sun, Y. et al. Study on the interaction mechanism between DNA and the main active components in Scutellaria baicalensis Georgi. Sens. Actuators B Chem. 129, 799–810 (2008).

    CAS  PubMed  Google Scholar 

  55. 55.

    Khan, N. M., Ahmad, I., Ansari, M. Y. & Haqqi, T. M. Wogonin, a natural flavonoid, intercalates with genomic DNA and exhibits protective effects in IL-1β stimulated osteoarthritis chondrocytes. Chem. Biol. Interact. 274, 13–23 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Boussif, O. et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl Acad. Sci. USA 92, 7297–7301 (1995).

    CAS  PubMed  Google Scholar 

  57. 57.

    Aldrian, G. et al. PEGylation rate influences peptide-based nanoparticles mediated siRNA delivery in vitro and in vivo. J. Control. Release 256, 79–91 (2017).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key R&D Program of China (2019YFA0110600) and the National Natural Science Foundation of China (81970916, 81671031 and 81800947).

Author information

Affiliations

Authors

Contributions

Y.L. supervised and conceived the research. T.T., W.M., Y.Z., N.L., S.S., Q.L., X.X., Q.Z., S.L., M.L. and Y.G. designed the TDN-based delivery systems and completed the corresponding experiments. T.Z., T.T., S.L., R.Z., X.C. and Y.L. interpreted data and wrote the manuscript.

Corresponding author

Correspondence to Yunfeng Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Yonggang Ke and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Ma, W. et al. Nano Lett. 19, 4505–4517 (2019): https://doi.org/10.1021/acs.nanolett.9b01320

Zhang, Y. et al. Nano Lett. 18, 5652–5659 (2018): https://doi.org/10.1021/acs.nanolett.8b02166

Supplementary information

Supplementary Information

Supplementary Figs. 1–7

Reporting Summary

Supplementary Data 1

Source data for Fig. 3e.

Supplementary Data 2

Source data for Fig. 4f.

Supplementary Data 3

Source data for Fig. 5c.

Supplementary Data 4

Source data for Fig. 6a and b.

Supplementary Data 5

Source data for Fig. 7d and e.

Supplementary Data 6

Source data for Fig. 10a, b, d and e.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Tian, T., Zhou, R. et al. Design, fabrication and applications of tetrahedral DNA nanostructure-based multifunctional complexes in drug delivery and biomedical treatment. Nat Protoc 15, 2728–2757 (2020). https://doi.org/10.1038/s41596-020-0355-z

Download citation

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.