Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Comprehensive structural glycomic characterization of the glycocalyxes of cells and tissues

Abstract

The glycocalyx comprises glycosylated proteins and lipids and fcorms the outermost layer of cells. It is involved in fundamental inter- and intracellular processes, including non-self-cell and self-cell recognition, cell signaling, cellular structure maintenance, and immune protection. Characterization of the glycocalyx is thus essential to understanding cell physiology and elucidating its role in promoting health and disease. This protocol describes how to comprehensively characterize the glycocalyx N-glycans and O-glycans of glycoproteins, as well as intact glycolipids in parallel, using the same enriched membrane fraction. Profiling of the glycans and the glycolipids is performed using nanoflow liquid chromatography–mass spectrometry (nanoLC-MS). Sample preparation, quantitative LC–tandem MS (LC-MS/MS) analysis, and data processing methods are provided. In addition, we discuss glycoproteomic analysis that yields the site-specific glycosylation of membrane proteins. To reduce the amount of sample needed, N-glycan, O-glycan, and glycolipid analyses are performed on the same enriched fraction, whereas glycoproteomic analysis is performed on a separate enriched fraction. The sample preparation process takes 2–3 d, whereas the time spent on instrumental and data analyses could vary from 1 to 5 d for different sample sizes. This workflow is applicable to both cell and tissue samples. Systematic changes in the glycocalyx associated with specific glycoforms and glycoconjugates can be monitored with quantitation using this protocol. The ability to quantitate individual glycoforms and glycoconjugates will find utility in a broad range of fundamental and applied clinical studies, including glycan-based biomarker discovery and therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Summary of the workflow for cell sample collection and membrane extraction.
Fig. 2: Summary of the workflow for comprehensive LC-MS/MS analysis of the cell membrane glycocalyx.
Fig. 3: Examples of tissues with cell surface glycocalyxes analyzed by LC-MS/MS.
Fig. 4: Examples of LC-MS profiles from the Caco-2 cell line.
Fig. 5: Glycoproteomic data of serum standard.
Fig. 6: Tandem MS spectra of selected compounds.
Fig. 7: Examples of site-specific glycopeptide mapping of N-linked glycoproteins and O-linked glycoproteins.
Fig. 8: The N-glycomic analysis of Caco-2 cells cultured grown at different days.
Fig. 9: The identification and quantitation of glycosphingolipids from Caco-2 and PNT2 cell lines.

Similar content being viewed by others

Ieva Bagdonaite, Stacy A. Malaker, … Nichollas E. Scott

Data availability

The data are all available online. Data from ref. 23 (Park, D. et al. Glycobiology 27, 847–860 (2017)) (used for Fig. 4a) are available at https://doi.org/10.1093/glycob/cwx041. Data from ref. 24 (Park, D. et al. Chem. Sci. 9, 6271–6285 (2018)) (used for Figs. 4b and 9) are available at https://doi.org/10.1039/c8sc01875h. Data from ref. 26 (Wong, M. et al. Sci. Rep. 8, 10993 (2018)) (used for Fig. 4c) are available at https://doi.org/10.1038/s41598-018-29324-7. Data from ref. 25 (Li, Q. et al. Chem. Sci. 10, 6199–6209 (2019)) (used for Fig. 6) are available at https://doi.org/10.1039/c9sc01360a. Data from ref. 33 (Park, D. et al. Mol. Cell. Proteomics 14, 2910–2921 (2015)) (used for Fig. 8) are available at https://doi.org/10.1074/mcp.M115.053983.

References

  1. Martinez-Seara Monne, H., Danne, R., Róg, T., Ilpo, V. & Gurtovenko, A. Structure of glycocalyx. Biophys. J. 104, 251a (2013).

    Google Scholar 

  2. Reitsma, S., Slaaf, D. W., Vink, H., Van Zandvoort, M. A. & Oude Egbrink, M. G. The endothelial glycocalyx: composition, functions, and visualization. Pflügers Arch. 454, 345–359 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Flessner, M. F. Endothelial glycocalyx and the peritoneal barrier. Perit. Dial. Int. 28, 6–12 (2008).

    PubMed  Google Scholar 

  4. Mensah, S. A. et al. Regeneration of glycocalyx by heparan sulfate and sphingosine 1-phosphate restores inter-endothelial communication. PloS ONE 12, e0186116 (2017).

    PubMed  PubMed Central  Google Scholar 

  5. Kuo, J. C.-H., Gandhi, J. G., Zia, R. N. & Paszek, M. J. Physical biology of the cancer cell glycocalyx. Nat. Phys. 14, 658 (2018).

    CAS  Google Scholar 

  6. Yao, Y., Rabodzey, A. & Dewey, C. F. Jr Glycocalyx modulates the motility and proliferative response of vascular endothelium to fluid shear stress. Am. J. Physiol. Heart Circ. Physiol. 293, H1023–H1030 (2007).

    CAS  PubMed  Google Scholar 

  7. Gristina, A. G. & Costerton, J. Bacterial adherence and the glycocalyx and their role in musculoskeletal infection. Orthop. Clin. North Am. 15, 517–535 (1984).

    CAS  PubMed  Google Scholar 

  8. Martin, L., Koczera, P., Zechendorf, E. & Schuerholz, T. The endothelial glycocalyx: new diagnostic and therapeutic approaches in sepsis. BioMed. Res. Int. 2016, 1–8 (2016).

    Google Scholar 

  9. Arabyan, N. et al. Salmonella degrades the host glycocalyx leading to altered infection and glycan remodeling. Sci. Rep. 6, 29525 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Yeo, T. W. et al. Glycocalyx breakdown is associated with severe disease and fatal outcome in Plasmodium falciparum malaria. Clin. Infect. Dis. 69, 1712–1720 (2019).

    PubMed  PubMed Central  Google Scholar 

  11. Hakomori, S.-i. in Advances in Cancer Research Vol. 52 (eds Vande Woude, G. F. & Klein, G.) 257–331 (Academic Press, 1989).

  12. Noda, K. et al. Relationship between elevated FX expression and increased production of GDP-l-fucose, a common donor substrate for fucosylation in human hepatocellular carcinoma and hepatoma cell lines. Cancer Res. 63, 6282–6289 (2003).

    CAS  PubMed  Google Scholar 

  13. Nie, H. et al. Specific N-glycans of hepatocellular carcinoma cell surface and the abnormal increase of core-α-1, 6-fucosylated triantennary glycan via N-acetylglucosaminyltransferases-IVa regulation. Sci. Rep. 5, 16007 (2015).

    PubMed  PubMed Central  Google Scholar 

  14. Paszek, M. J. et al. The cancer glycocalyx mechanically primes integrin-mediated growth and survival. Nature 511, 319 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Maverakis, E. et al. Glycans in the immune system and The Altered Glycan Theory of Autoimmunity: a critical review. J. Autoimmun. 57, 1–13 (2015).

    CAS  PubMed  Google Scholar 

  16. Dixon, J. et al. Electron microscopic investigation of the bladder urothelium and glycocalyx in patients with interstitial cystitis. J. Urol. 135, 621–625 (1986).

    CAS  PubMed  Google Scholar 

  17. de Buy Wenniger, L. J. M. et al. The cholangiocyte glycocalyx stabilizes the ‘biliary HCO3-umbrella’: an integrated line of defense against toxic bile acids. Dig. Dis. 33, 397–407 (2015).

    Google Scholar 

  18. An, H. J., Kronewitter, S. R., de Leoz, M. L. A. & Lebrilla, C. B. Glycomics and disease markers. Curr. Opin. Chem. Biol. 13, 601–607 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Blomme, B., Van Steenkiste, C., Callewaert, N. & Van Vlierberghe, H. Alteration of protein glycosylation in liver diseases. J. Hepatol. 50, 592–603 (2009).

    CAS  PubMed  Google Scholar 

  20. Dall’Olio, F. et al. N-glycomic biomarkers of biological aging and longevity: a link with inflammaging. Ageing Res. Rev. 12, 685–698 (2013).

    PubMed  Google Scholar 

  21. Lee, S.-M. et al. N-Glycosylation of asparagine 130 in the extracellular domain of the human calcitonin receptor significantly increases peptide hormone affinity. Biochemistry 56, 3380–3393 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Veillon, L., Fakih, C., Abou-El-Hassan, H., Kobeissy, F. & Mechref, Y. Glycosylation changes in brain cancer. ACS Chem. Neurosci. 9, 51–72 (2017).

    PubMed  PubMed Central  Google Scholar 

  23. Park, D. et al. Enterocyte glycosylation is responsive to changes in extracellular conditions: implications for membrane functions. Glycobiology 27, 847–860 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Park, D. D. et al. Membrane glycomics reveal heterogeneity and quantitative distribution of cell surface sialylation. Chem. Sci. 9, 6271–6285 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Li, Q., Xie, Y., Xu, G. & Lebrilla, C. B. Identification of potential sialic acid binding proteins on cell membranes by proximity chemical labeling. Chem. Sci. 10, 6199–6209 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wong, M., Xu, G., Park, D., Barboza, M. & Lebrilla, C. B. Intact glycosphingolipidomic analysis of the cell membrane during differentiation yields extensive glycan and lipid changes. Sci. Rep. 8, 10993 (2018).

    PubMed  PubMed Central  Google Scholar 

  27. Wu, S., Tao, N., German, J. B., Grimm, R. & Lebrilla, C. B. Development of an annotated library of neutral human milk oligosaccharides. J. Proteome Res. 9, 4138–4151 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ninonuevo, M. R. et al. A strategy for annotating the human milk glycome. J. Agric. Food Chem. 54, 7471–7480 (2006).

    CAS  PubMed  Google Scholar 

  29. Barboza, M. et al. Glycosylation of human milk lactoferrin exhibits dynamic changes during early lactation enhancing its role in pathogenic bacteria-host interactions. Mol. Cell. Proteom. 11, M111. 015248 (2012).

    Google Scholar 

  30. Chu, C. S. et al. Profile of native N‐linked glycan structures from human serum using high performance liquid chromatography on a microfluidic chip and time‐of‐flight mass spectrometry. Proteomics 9, 1939–1951 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee, H. et al. Multiple precursor ion scanning of gangliosides and sulfatides with a reversed-phase microfluidic chip and quadrupole time-of-flight mass spectrometry. Anal. Chem. 84, 5905–5912 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. An, H. J. et al. Extensive determination of glycan heterogeneity reveals an unusual abundance of high mannose glycans in enriched plasma membranes of human embryonic stem cells. Mol. Cell. Proteom. 11, M111. 010660 (2012).

    Google Scholar 

  33. Park, D. et al. Characteristic changes in cell surface glycosylation accompany intestinal epithelial cell (IEC) differentiation: high mannose structures dominate the cell surface glycome of undifferentiated enterocytes. Mol. Cell. Proteom. 14, 2910–2921 (2015).

    CAS  Google Scholar 

  34. Ruhaak, L. R. et al. Differential N-glycosylation patterns in lung adenocarcinoma tissue. J. Proteome Res. 14, 4538–4549 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ruhaak, L. et al. Glycan labeling strategies and their use in identification and quantification. Anal. Bioanal. l Chem. 397, 3457–3481 (2010).

    CAS  Google Scholar 

  36. Goldstein, I. J., Winter, H. C. & Poretz, R. D. in New Comprehensive Biochemistry Vol. 29 (eds Montreuil, J., Vliegenthart, J. F. G. & Schachter, H.) 403–474 (Elsevier, 1997).

  37. Lee, L. Y. et al. An optimized approach for enrichment of glycoproteins from cell culture lysates using native multi‐lectin affinity chromatography. J. Sep. Sci. 35, 2445–2452 (2012).

    CAS  PubMed  Google Scholar 

  38. Palaniappan, K. K. & Bertozzi, C. R. Chemical glycoproteomics. Chem. Rev. 116, 14277–14306 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kuhn, P. H. et al. Secretome protein enrichment identifies physiological BACE1 protease substrates in neurons. EMBO J. 31, 3157–3168 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Haun, R. S. et al. Bioorthogonal labeling cell-surface proteins expressed in pancreatic cancer cells to identify potential diagnostic/therapeutic biomarkers. Cancer Biol. Ther. 16, 1557–1565 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zacharias, L. G. et al. HILIC and ERLIC enrichment of glycopeptides derived from breast and brain cancer cells. J. Proteome Res. 15, 3624–3634 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sibille, E. et al. Ganglioside profiling of the human retina: comparison with other ocular structures, brain and plasma reveals tissue specificities. PloS ONE 11, e0168794 (2016).

    PubMed  PubMed Central  Google Scholar 

  43. Lapainis, T., Rubakhin, S. S. & Sweedler, J. V. Capillary electrophoresis with electrospray ionization mass spectrometric detection for single-cell metabolomics. Anal. Chem. 81, 5858–5864 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Mellors, J., Gorbounov, V., Ramsey, R. & Ramsey, J. Fully integrated glass microfluidic device for performing high-efficiency capillary electrophoresis and electrospray ionization mass spectrometry. Anal. Chem. 80, 6881–6887 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ruhaak, L. R., Xu, G., Li, Q., Goonatilleke, E. & Lebrilla, C. B. Mass spectrometry approaches to glycomic and glycoproteomic analyses. Chem. Rev. 118, 7886–7930 (2018).

    CAS  PubMed  Google Scholar 

  46. Both, P. et al. Discrimination of epimeric glycans and glycopeptides using IM-MS and its potential for carbohydrate sequencing. Nat. Chem. 6, 65 (2014).

    CAS  PubMed  Google Scholar 

  47. Plasencia, M. D., Isailovic, D., Merenbloom, S. I., Mechref, Y. & Clemmer, D. E. Resolving and assigning N-linked glycan structural isomers from ovalbumin by IMS-MS. J. Am. Soc. Mass Spectrom. 19, 1706–1715 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hofmann, J. et al. Identification of Lewis and blood group carbohydrate epitopes by ion mobility-tandem-mass spectrometry fingerprinting. Anal. Chem. 89, 2318–2325 (2017).

    CAS  PubMed  Google Scholar 

  49. Leopold, J., Popkova, Y., Engel, K. M. & Schiller, J. Recent developments of useful MALDI matrices for the mass spectrometric characterization of lipids. Biomolecules 8, 173 (2018).

    PubMed Central  Google Scholar 

  50. Seipert, R. R. et al. Factors that influence fragmentation behavior of N-linked glycopeptide ions. Anal. Chem. 80, 3684–3692 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Cao, L. et al. Intact glycopeptide characterization using mass spectrometry. Expert Rev. Proteom. 13, 513–522 (2016).

    CAS  Google Scholar 

  52. Yu, Q. et al. Electron-transfer/higher-energy collision dissociation (EThcD)-enabled intact glycopeptide/glycoproteome characterization. J. Am. Soc. Mass Spectrom. 28, 1751–1764 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Forgue-Lafitte, M.-E., Coudray, A.-M., Bréant, B. & Mešter, J. Proliferation of the human colon carcinoma cell line HT29: autocrine growth and deregulated expression of the c-myc oncogene. Cancer Res. 49, 6566–6571 (1989).

    CAS  PubMed  Google Scholar 

  54. Dey, P. M., Brownleader, M. D. & Harborne, J. B. in Plant Biochemistry (eds Dey, P. M. & Harborne, J. B.) 1–47 (Academic Press, 1997).

  55. Banneau, G., Ayadi, M., Armenoult, L. & Carvalho, E. Homogenization of cartilage tumors to extract total RNA to microarray and sequencing analysis using Precellys bead-beating technology. Biotechniques 52, 196–197 (2012).

    CAS  Google Scholar 

  56. Fujiki, Y., Hubbard, A. L., Fowler, S. & Lazarow, P. B. Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J. Cell Biol. 93, 97–102 (1982).

    CAS  PubMed  Google Scholar 

  57. Li, Q., Xie, Y., Wong, M. & Lebrilla, B. C. Characterization of cell glycocalyx with mass spectrometry methods. Cells 8, 882 (2019).

  58. Sandoval, W. N. et al. Rapid removal of N-linked oligosaccharides using microwave assisted enzyme catalyzed deglycosylation. Int. J. Mass Spectrom. 259, 117–123 (2007).

    CAS  Google Scholar 

  59. Lauber, M. A. et al. Rapid preparation of released N-glycans for HILIC analysis using a labeling reagent that facilitates sensitive fluorescence and ESI-MS detection. Anal. Chem. 87, 5401–5409 (2015).

    CAS  PubMed  Google Scholar 

  60. Van Ree, R. et al. β(1, 2)-xylose and α(1, 3)-fucose residues have a strong contribution in IgE binding to plant glycoallergens. J. Biol. Chem. 275, 11451–11458 (2000).

    PubMed  Google Scholar 

  61. Hua, S. et al. Comprehensive native glycan profiling with isomer separation and quantitation for the discovery of cancer biomarkers. Analyst 136, 3663–3671 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Park, D. et al. Salmonella typhimurium enzymatically landscapes the host intestinal epithelial cell (IEC) surface glycome to increase invasion. Mol. Cell. Proteom. 15, 3653–3664 (2016).

    CAS  Google Scholar 

  63. Folch, J., Lees, M. & Sloane-Stanley, G. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509 (1957).

    CAS  PubMed  Google Scholar 

  64. Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).

    CAS  PubMed  Google Scholar 

  65. Miura, Y. et al. Glycoblotting-assisted O-glycomics: ammonium carbamate allows for highly efficient O-glycan release from glycoproteins. Anal. Chem. 82, 10021–10029 (2010).

    CAS  PubMed  Google Scholar 

  66. Sun, S., Zhou, J.-Y., Yang, W. & Zhang, H. Inhibition of protein carbamylation in urea solution using ammonium-containing buffers. Anal. Biochem. 446, 76–81 (2014).

    CAS  PubMed  Google Scholar 

  67. Li, Q. et al. Site-specific glycosylation quantitation of 50 serum glycoproteins enhanced by predictive glycopeptidomics for improved disease biomarker discovery. Anal. Chem. 91, 5433–5445 (2019).

    CAS  PubMed  Google Scholar 

  68. Du, Y., Wang, F., May, K., Xu, W. & Liu, H. LC–MS analysis of glycopeptides of recombinant monoclonal antibodies by a rapid digestion procedure. J. Chromatogr. B 907, 87–93 (2012).

    CAS  Google Scholar 

  69. Kalli, A., Smith, G. T., Sweredoski, M. J. & Hess, S. Evaluation and optimization of mass spectrometric settings during data-dependent acquisition mode: focus on LTQ-Orbitrap mass analyzers. J. Proteome Res. 12, 3071–3086 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kalli, A. & Hess, S. Effect of mass spectrometric parameters on peptide and protein identification rates for shotgun proteomic experiments on an LTQ‐Orbitrap mass analyzer. Proteomics 12, 21–31 (2012).

    CAS  PubMed  Google Scholar 

  71. Yang, H., Yang, C. & Sun, T. Characterization of glycopeptides using a stepped higher‐energy C‐trap dissociation approach on a hybrid quadrupole orbitrap. Rapid Commun. Mass Spectrom. 32, 1353–1362 (2018).

    CAS  PubMed  Google Scholar 

  72. Chen, Z. et al. Site-specific characterization and quantitation of N-glycopeptides in PKM2 knockout breast cancer cells using DiLeu isobaric tags enabled by electron-transfer/higher-energy collision dissociation (EThcD). Analyst 143, 2508–2519 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Singh, C., Zampronio, C. G., Creese, A. J. & Cooper, H. J. Higher energy collision dissociation (HCD) product ion-triggered electron transfer dissociation (ETD) mass spectrometry for the analysis of N-linked glycoproteins. J. Proteome Res. 11, 4517–4525 (2012).

    CAS  PubMed  Google Scholar 

  74. Riley, N. M., Hebert, A. S., Westphall, M. S. & Coon, J. J. Capturing site-specific heterogeneity with large-scale N-glycoproteome analysis. Nat. Commun. 10, 1311 (2019).

    PubMed  PubMed Central  Google Scholar 

  75. Kronewitter, S. R. et al. The development of retrosynthetic glycan libraries to profile and classify the human serum N-linked glycome. Proteomics 9, 2986–2994 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Senger, R. S. & Karim, M. N. Prediction of N-linked glycan branching patterns using artificial neural networks. Math. Biosci. 211, 89–104 (2008).

    CAS  PubMed  Google Scholar 

  77. Jackson, S. & Nicolson, S. W. Xylose as a nectar sugar: from biochemistry to ecology. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 131, 613–620 (2002).

    PubMed  Google Scholar 

  78. Samraj, A. N. et al. A red meat-derived glycan promotes inflammation and cancer progression. Proc. Natl Acad. Sci. USA 112, 542–547 (2015).

    CAS  PubMed  Google Scholar 

  79. Chou, H.-H. et al. A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence. Proc. Natl Acad. Sci. USA 95, 11751–11756 (1998).

    CAS  PubMed  Google Scholar 

  80. Tra, V. N. & Dube, D. H. Glycans in pathogenic bacteria–potential for targeted covalent therapeutics and imaging agents. Chem. Commun. 50, 4659–4673 (2014).

    CAS  Google Scholar 

  81. Yamakawa, N. et al. Systems glycomics of adult zebrafish identifies organ-specific sialylation and glycosylation patterns. Nat. Commun. 9, 4647 (2018).

    PubMed  PubMed Central  Google Scholar 

  82. Hartley, M. D. et al. Biochemical characterization of the O-linked glycosylation pathway in Neisseria gonorrhoeae responsible for biosynthesis of protein glycans containing N, N′-diacetylbacillosamine. Biochemistry 50, 4936–4948 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Merrill, A. H. SphinGOMAP: Lipidomic analysis of [glyco]sphingolipid metabolism. FASEB J. 20, A1472 (2006).

    Google Scholar 

  84. Zeng, W.-F. et al. pGlyco: a pipeline for the identification of intact N-glycopeptides by using HCD-and CID-MS/MS and MS3. Sci. Rep. 6, 25102 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bern, M., Kil, Y. J. & Becker, C. in Current Protocols in Bioinformatics (Wiley, 2002).

  86. Aldredge, D., An, H. J., Tang, N., Waddell, K. & Lebrilla, C. B. Annotation of a serum N-glycan library for rapid identification of structures. J. Proteome Res. 11, 1958–1968 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Song, T., Aldredge, D. & Lebrilla, C. B. A method for in-depth structural annotation of human serum glycans that yields biological variations. Anal. Chem. 87, 7754–7762 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Hülsmeier, A. J., Paesold-Burda, P. & Hennet, T. N-glycosylation site occupancy in serum glycoproteins using multiple reaction monitoring liquid chromatography-mass spectrometry. Mol. Cell. Proteom. 6, 2132–2138 (2007).

    Google Scholar 

  89. Zhang, F., Zhang, Z. & Linhardt, R. J. in Handbook of Glycomics (eds Cummings, R. D. & Pierce, J. M.) 59–80 (Academic Press, 2010).

  90. Xu, G. et al. Unveiling the metabolic fate of monosaccharides in cell membranes with glycomic and glycoproteomic analyses. Chem. Sci. 10, 6992–7002 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (GMRO1R01, GM049077).

Author information

Authors and Affiliations

Authors

Contributions

Q.L., Y.X., M.W., M.B., and C.B.L. contributed to the development of this protocol and wrote and edited the manuscript.

Corresponding author

Correspondence to Carlito B. Lebrilla.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Park, D. D. et al. Chem. Sci. 9, 6271–6285 (2018): https://doi.org/10.1039/c8sc01875h

Wong, M., Xu, G., Park, D., Barboza, M. & Lebrilla, C. B. Sci. Rep. 8, 10993 (2018): https://doi.org/10.1038/s41598-018-29324-7

Li, Q., Xie, Y., Xu, G. & Lebrilla, C. B. Chem. Sci. 10, 6199–6209 (2019): https://doi.org/10.1039/c9sc01360a

Supplementary information

Supplementary Information

Supplementary Figs 1 and 2.

Reporting Summary

Supplementary Data 1

The table contains examples of N-glycans with their masses, compositions, and types.

Supplementary Data 2

The table contains possible ceramide m/z values.

Supplementary Data 3

The table can be used to match the closest glycan composition to the glycosphingolipid with a known precursor m/z, precursor charge state, and ceramide m/z.

Supplementary Data 4

The table contains some common saccharide and lipid fragments.

Supplementary Data 5

The table contains a pivot table for generating a database of glycosphingolipids.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Xie, Y., Wong, M. et al. Comprehensive structural glycomic characterization of the glycocalyxes of cells and tissues. Nat Protoc 15, 2668–2704 (2020). https://doi.org/10.1038/s41596-020-0350-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-020-0350-4

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing