Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Organotypic culture assays for murine and human primary and metastatic-site tumors

Abstract

Cancer invasion and metastasis are challenging to study in vivo since they occur deep inside the body over extended time periods. Organotypic 3D culture of fresh tumor tissue enables convenient real-time imaging, genetic and microenvironmental manipulation and molecular analysis. Here, we provide detailed protocols to isolate and culture heterogenous organoids from murine and human primary and metastatic site tumors. The time required to isolate organoids can vary based on the tissue and organ type but typically takes <7 h. We describe a suite of assays that model specific aspects of metastasis, including proliferation, survival, invasion, dissemination and colony formation. We also specify comprehensive protocols for downstream applications of organotypic cultures that will allow users to (i) test the role of specific genes in regulating various cellular processes, (ii) distinguish the contributions of several microenvironmental factors and (iii) test the effects of novel therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Workflow diagram.
Fig. 2: Isolation of organoids from primary murine and human mammary tumors.
Fig. 3: Viral transduction of organoids.
Fig. 4: 3D assays for growth, invasion and dissemination of tumor organoids.
Fig. 5: 3D colony-formation assay to model metastasis formation.
Fig. 6: Isolation of metastatic organoids from murine and human mammary tumor-derived metastases.
Fig. 7: Downstream applications of 3D organotypic cultures: immunofluorescence, protein isolation and FACS.
Fig. 8: Application of methods to multiple model and organ systems.

Similar content being viewed by others

Data availability

The data mentioned in the protocol are included. Any additional information may be provided by the corresponding author upon request. Source data are provided with this paper.

References

  1. Nelson, C. M. & Bissell, M. J. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu. Rev. Cell Dev. Biol. 22, 287–309 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Simian, M. et al. The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells. Development 128, 3117–3131 (2001).

    CAS  PubMed  Google Scholar 

  3. Ewald, A. J. Practical considerations for long-term time-lapse imaging of epithelial morphogenesis in three-dimensional organotypic cultures. Cold Spring Harb. Protoc. 2013, 100–117 (2013).

    PubMed  Google Scholar 

  4. Nguyen-Ngoc, K. V. et al. ECM microenvironment regulates collective migration and local dissemination in normal and malignant mammary epithelium. Proc. Natl Acad. Sci. U. S. A. 109, E2595–E2604 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ewald, A. J. et al. Mammary collective cell migration involves transient loss of epithelial features and individual cell migration within the epithelium. J. Cell Sci. 125, 2638–2654 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen, Q. et al. A temporal requirement for Hippo signaling in mammary gland differentiation, growth, and tumorigenesis. Genes Dev. 28, 432–437 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Streuli, C. H., Bailey, N. & Bissell, M. J. Control of mammary epithelial differentiation: basement membrane induces tissue-specific gene expression in the absence of cell-cell interaction and morphological polarity. J. Cell Biol. 115, 1383–1395 (1991).

    CAS  PubMed  Google Scholar 

  8. Mroue, R. & Bissell, M. J. Three-dimensional cultures of mouse mammary epithelial cells. Methods Mol. Biol. 945, 221–250 (2013).

    PubMed  PubMed Central  Google Scholar 

  9. Liu, Y. et al. Novel role for Netrins in regulating epithelial behavior during lung branching morphogenesis. Curr. Biol. 14, 897–905 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Del Moral, P. M. & Warburton, D. Explant culture of mouse embryonic whole lung, isolated epithelium, or mesenchyme under chemically defined conditions as a system to evaluate the molecular mechanism of branching morphogenesis and cellular differentiation. Methods Mol. Biol. 633, 71–79 (2010).

    PubMed  PubMed Central  Google Scholar 

  11. Lee, J. H. et al. Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-thrombospondin-1 axis. Cell 156, 440–455 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sato, T. et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141, 1762–1772 (2011).

    CAS  PubMed  Google Scholar 

  13. Ootani, A. et al. Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat. Med. 15, 701–706 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Huch, M. et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J. 32, 2708–2721 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ghosh, S. et al. PI3K/mTOR signaling regulates prostatic branching morphogenesis. Dev. Biol. 360, 329–342 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Drost, J. et al. Organoid culture systems for prostate epithelial and cancer tissue. Nat. Protoc. 11, 347–358 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Huch, M. et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494, 247–250 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Barker, N. et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6, 25–36 (2010).

    CAS  PubMed  Google Scholar 

  19. Steinberg, Z. et al. FGFR2b signaling regulates ex vivo submandibular gland epithelial cell proliferation and branching morphogenesis. Development 132, 1223–1234 (2005).

    CAS  PubMed  Google Scholar 

  20. Takasato, M. et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 536, 238 (2016).

    CAS  PubMed  Google Scholar 

  21. Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).

    CAS  PubMed  Google Scholar 

  22. Dekkers, J. F. et al. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat. Med. 19, 939–945 (2013).

    CAS  PubMed  Google Scholar 

  23. Gabriel, E. et al. Recent Zika virus isolates induce premature differentiation of neural progenitors in human brain organoids. Cell Stem Cell 20, 397–406.e5 (2017).

    CAS  PubMed  Google Scholar 

  24. Qian, X., Nguyen, H. N., Jacob, F., Song, H. & Ming, G. L. Using brain organoids to understand Zika virus-induced microcephaly. Development 144, 952–957 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Cheung, K. J., Gabrielson, E., Werb, Z. & Ewald, A. J. Collective invasion in breast cancer requires a conserved basal epithelial program. Cell 155, 1639–1651 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Cheung, K. J. et al. Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proc. Natl Acad. Sci. U. S. A. 113, E854–E863 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tiriac, H. et al. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer. Cancer Discov. 8, 1112–1129 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Tuveson, D. & Clevers, H. Cancer modeling meets human organoid technology. Science 364, 952–955 (2019).

    CAS  PubMed  Google Scholar 

  29. Neal, J. T. et al. Organoid modeling of the tumor immune microenvironment. Cell 175, 1972–1988.e16 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Padmanaban, V. et al. E-cadherin is required for metastasis in multiple models of breast cancer. Nature 573, 439–444 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Drost, J. & Clevers, H. Organoids in cancer research. Nat. Rev. Cancer 18, 407–418 (2018).

    CAS  PubMed  Google Scholar 

  32. Vlachogiannis, G. et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 359, 920–926 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee, S. H. et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell 173, 515–528.e17 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Shamir, E. R. & Ewald, A. J. Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat. Rev. Mol. Cell Biol. 15, 647–664 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sirka, O. K., Shamir, E. R. & Ewald, A. J. Myoepithelial cells are a dynamic barrier to epithelial dissemination. J. Cell Biol. 217, 368–2281 (2018).

    Google Scholar 

  36. Georgess, D. et al. Twist1-induced epithelial dissemination requires Prkd1 signaling. Cancer Res. 80, 204–218 (2020).

    CAS  PubMed  Google Scholar 

  37. Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).

    CAS  PubMed  Google Scholar 

  38. Huang, L. et al. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat. Med. 21, 1364–1371 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Takasato, M., Er, P. X., Chiu, H. S. & Little, M. H. Generation of kidney organoids from human pluripotent stem cells. Nat. Protoc. 11, 1681–1692 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tammela, T. et al. A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma. Nature 545, 355–359 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kalabis, J. et al. Isolation and characterization of mouse and human esophageal epithelial cells in 3D organotypic culture. Nat. Protoc. 7, 235–246 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, X., Bush, K. T. & Nigam, S. K. In vitro culture of embryonic kidney rudiments and isolated ureteric buds. Methods Mol. Biol. 886, 13–21 (2012).

    CAS  PubMed  Google Scholar 

  43. Lancaster, M. A. & Knoblich, J. A. Generation of cerebral organoids from human pluripotent stem cells. Nat. Protoc. 9, 2329–2340 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Unbekandt, M. & Davies, J. A. Dissociation of embryonic kidneys followed by reaggregation allows the formation of renal tissues. Kidney Int. 77, 407–416 (2010).

    PubMed  Google Scholar 

  45. Debnath, J., Muthuswamy, S. K. & Brugge, J. S. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30, 256–268 (2003).

    CAS  PubMed  Google Scholar 

  46. Takebe, T. et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499, 481–484 (2013).

    CAS  PubMed  Google Scholar 

  47. Shamir, E. R. et al. Twist1-induced dissemination preserves epithelial identity and requires E-cadherin. J. Cell Biol. 204, 839–856 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Nuciforo, S. et al. Organoid models of human liver cancers derived from tumor needle biopsies. Cell Rep. 24, 1363–1376 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Nguyen-Ngoc, K. V. et al. 3D culture assays of murine mammary branching morphogenesis and epithelial invasion. Methods Mol. Biol. 1189, 135–162 (2015).

    PubMed  PubMed Central  Google Scholar 

  50. Guy, C. T., Cardiff, R. D. & Muller, W. J. Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol. Cell. Biol. 12, 954–961 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Green, J. E. et al. The C3(1)/SV40 T-antigen transgenic mouse model of mammary cancer: ductal epithelial cell targeting with multistage progression to carcinoma. Oncogene 19, 1020–1027 (2000).

    CAS  PubMed  Google Scholar 

  52. Dhanasekaran, R. et al. MYC and Twist1 cooperate to drive metastasis by eliciting crosstalk between cancer and innate immunity. Elife 9, e50731 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Nguyen-Ngoc, K. V. & Ewald, A. J. Mammary ductal elongation and myoepithelial migration are regulated by the composition of the extracellular matrix. J. Microsc. 251, 212–223 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Ewald laboratory for helpful comments on the manuscript and for sharing organoid yield information (data points in Fig. 2f). We also thank the Cooperative Human Tissue Network (CHTN) for providing patient samples used in this study. We thank Jin Zhu for assistance with FACS experiments. K.J.C. was supported by the Burroughs Welcome Fund Career Award for Medical Scientists 1013355.01. D.G. was supported by a Postdoctoral Fellowship Grant from the Susan G. Komen Foundation (PDF15332336). A.J.E. received support for this project through grants from The Breast Cancer Research Foundation (BCRF-18-048), the Metastatic Breast Cancer Network, Twisted Pink, Hope Scarves, Theresa’s Research Foundation and the National Institutes of Health/National Cancer Institute (U01CA217846, U01CA212007, U54CA2101732 and 3P30CA006973).

Author information

Authors and Affiliations

Authors

Contributions

V.P., K.J.C., E.M.G, N.M.N., A.K.F., E.H., D.G. and A.J.E. contributed to the development and optimization of protocols described in this manuscript. W.M. and P.T.T. provided valuable advice on adaptations of these methods to different model systems. V.P., E.M.G. and A.J.E. wrote the manuscript with useful input from all authors.

Corresponding author

Correspondence to Andrew J. Ewald.

Ethics declarations

Competing interests

A.J.E. and K.J.C. have a patent related to the use of keratin-14 as a biomarker for invasive cancer cell populations. A.J.E. and V.P. have a patent related to the use of antibodies for cancer therapy. A.J.E.’s spouse is an employee of Immunocore.

Additional information

Peer review information Nature Protocols thanks Johan de Rooij and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Padmanaban, V. et al. Nature 573, 439–444 (2019): https://doi.org/10.1038/s41586-019-1526-3

Cheung, K. et al. Proc. Natl Acad. Sci. USA 113, E854–E863 (2016): https://doi.org/10.1073/pnas.1508541113

Cheung, K. et al. Cell 155, 1639–1651 (2013): https://doi.org/10.1016/j.cell.2013.11.029

Extended Data

Extended Data Fig. 1 Variables that affect organoid yield from mammary human tumor organoids.

a, Organoid yield increased as the protocol was optimized during the course of the study. b, Variations in organoid yield based on modifications to the protocol. Median with SD is represented.

Supplementary information

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 7

Unprocessed western blots.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padmanaban, V., Grasset, E.M., Neumann, N.M. et al. Organotypic culture assays for murine and human primary and metastatic-site tumors. Nat Protoc 15, 2413–2442 (2020). https://doi.org/10.1038/s41596-020-0335-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-020-0335-3

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer