Abstract
Macrophage phagocytosis can be triggered by diverse receptor-ligand interactions to clear pathogens and dead cells from a host. Many ways of assaying phagocytosis exist that utilize a variety of phagocytic targets with different combinations of receptor-ligand interactions, making comparisons difficult. To study how phagocytosis is affected by specific changes to the target surface, we developed an in vitro assay based on reconstituted membrane-coated target particles to which known molecules can be added. The targets are made by coating glass beads with supported lipid bilayers followed by coupling proteins and other ligands of interest. Composition of the lipid bilayer can be varied to bind and orient specific proteins, incorporate signaling and reporter lipids, and control bilayer fluidity. To quantify phagocytosis, the reconstituted target particles are incubated with macrophages in vitro for a defined period of time, imaged with fluorescence microscopy and analyzed with software that measures the amount of target particle fluorescence within each macrophage. A multi-well plate format can be used for multi-parameter studies (e.g., to investigate how phagocytosis is affected by specific receptor-ligand interactions, ligand density, lipid charge, membrane fluidity and other molecular details). As an example, we demonstrate that antibody-dependent phagocytosis is more efficient for targets with fluid membranes than non-fluid membranes. The assay protocol takes approximately 6 h and requires basic molecular biology, mammalian cell culture and fluorescence microscopy skills. This assay can also be used with other phagocytic and non-phagocytic cells to study the individual or collective roles of receptors and ligands in immune effector function.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Code availability
The CellProfiler project file is available in the Supplementary Software section of this paper.
References
Gordon, S. & Taylor, P. R. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5, 953–964 (2005).
Davies, L. C., Jenkins, S. J., Allen, J. E. & Taylor, P. R. Tissue-resident macrophages. Nat. Immunol. 14, 986–995 (2013).
Franken, L., Schiwon, M. & Kurts, C. Macrophages: sentinels and regulators of the immune system. Cell. Microbiol. 18, 475–487 (2016).
Gordon, S. Phagocytosis: an immunobiologic process. Immunity 44, 463–475 (2016).
Erwig, L. P. & Gow, N. A. R. Interactions of fungal pathogens with phagocytes. Nat. Rev. Microbiol. 14, 163–176 (2016).
Weiskopf, K. & Weissman, I. L. Macrophages are critical effectors of antibody therapies for cancer. mAbs 7, 303–310 (2015).
Overdijk, M. B. et al. Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma. mAbs 7, 311–320 (2015).
Bain, C. C. & Mowat, A. M. Macrophages in intestinal homeostasis and inflammation. Immunol. Rev. 260, 102–117 (2014).
Moore, K. J., Sheedy, F. J. & Fisher, E. A. Macrophages in atherosclerosis: a dynamic balance. Nat. Rev. Immunol. 13, 709–721 (2013).
Guerreiro, R. et al. TREM2 variants in Alzheimer’s disease. N. Engl. J. Med. 368, 117–127 (2013).
Hansen, D. V., Hanson, J. E. & Sheng, M. Microglia in Alzheimer’s disease. J. Cell Biol. 217, 459–472 (2018).
Tay, T. L. et al. Microglia gone rogue: impacts on psychiatric disorders across the lifespan. Front. Mol. Neurosci. 10, 421 (2018).
Jungi, T. W. A rapid and sensitive method allowing photometric determination of erythrophagocytosis by mononuclear phagocytes. J. Immunol. Methods 82, 141–153 (1985).
Wan, C. P., Park, C. S. & Lau, B. H. S. A rapid and simple microfluorometric phagocytosis assay. J. Immunol. Methods 162, 1–7 (1993).
Pacheco, P., White, D. & Sulchek, T. Effects of microparticle size and Fc density on macrophage phagocytosis. PLoS One 8, e60989 (2013).
Berken, A. & Benacerraf, B. Properties of antibodies cytophilic for macrophages. J. Exp. Med 123, 119–144 (1966).
Freeman, S. A. et al. Integrins form an expanding diffusional barrier that coordinates phagocytosis. Cell 164, 128–140 (2016).
Getahun, A. & Cambier, J. C. Of ITIMs, ITAMs and ITAMis, revisiting Immunoglobulin Fc receptor signaling. Immunol. Rev. 268, 66–73 (2015).
van der Merwe, P. A., Davis, S. J., Shaw, A. S. & Dustin, M. L. Cytoskeletal polarization and redistribution of cell-surface molecules during T cell antigen recognition. Semin. Immunol. 12, 5–21 (2000).
James, J. R. & Vale, R. D. Biophysical mechanism of T-cell receptor triggering in a reconstituted system. Nature 487, 64–69 (2012).
Davis, S. J. & van der Merwe, P. A. The structure and ligand interactions of CD2: implications for T-cell function. Immunol. Today 17, 177–187 (1996).
Davis, S. J. & van der Merwe, P. A. The kinetic-segregation model: TCR triggering and beyond. Nat. Immunol. 7, 803–809 (2006).
Bakalar, M. H. et al. Size-dependent segregation controls macrophage phagocytosis of antibody-opsonized targets. Cell 174, 131–142.e13 (2018).
Chikh, G. G., Li, W. M., Schutze-Redelmeier, M.-P., Meunier, J.-C. & Bally, M. B. Attaching histidine-tagged peptides and proteins to lipid-based carriers through use of metal-ion-chelating lipids. Biochim. Biophys. Acta Biomembr. 1567, 204–212 (2002).
Underhill, D. M. Macrophage recognition of zymosan particles. J. Endotoxin Res. 9, 176–180 (2003).
Tavanti, A. et al. Candida albicans isolates with different genomic backgrounds display a differential response to macrophage infection. Microbes Infect. 8, 791–800 (2006).
Champion, J. A. & Mitragotri, S. Role of target geometry in phagocytosis. Proc. Natl Acad. Sci. USA 103, 4930–4934 (2006).
Yamauchi, A. et al. Rac2-deficient murine macrophages have selective defects in superoxide production and phagocytosis of opsonized particles. J. Immunol. 173, 5971–5979 (2004).
Vidarsson, G., Dekkers, G. & Rispens, T. IgG subclasses and allotypes: from structure to effector functions. Front. Immunol. 5, 520 (2014).
Jennewein, M. F. & Alter, G. The immunoregulatory roles of antibody glycosylation. Trends Immunol. 38, 358–372 (2017).
Geiger, S. S., Curtis, A. M., O’Neill, L. A. J. & Siegel, R. M. Daily variation in macrophage phagocytosis is clock-independent and dispensable for cytokine production. Immunology 157, 122–136 (2019).
Kamentsky, L. et al. Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software. Bioinformatics 27, 1179–1180 (2011).
Edelstein, A. D. et al. Advanced methods of microscope control using μManager software. J. Biol. Methods 1, e10 (2014).
Jaiswal, S., Chao, M. P., Majeti, R. & Weissman, I. L. Macrophages as mediators of tumor immunosurveillance. Trends Immunol. 31, 212–219 (2010).
Willingham, S. B. et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc. Natl Acad. Sci. USA 109, 6662–6667 (2012).
Fadok, V. A. et al. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol. 148, 2207–2216 (1992).
Fadok, V. A., de Cathelineau, A., Daleke, D. L., Henson, P. M. & Bratton, D. L. Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fibroblasts. J. Biol. Chem. 276, 1071–1077 (2001).
Segawa, K. & Nagata, S. An apoptotic ‘eat me’ signal: phosphatidylserine exposure. Trends Cell Biol. 25, 639–650 (2015).
Prinz, H. Hill coefficients, dose–response curves and allosteric mechanisms. J. Chem. Biol. 3, 37–44 (2009).
Hamczyk, M. R., Villa-Bellosta, R., Andrés, V., Andrés, V. & Dorado, B. In vitro macrophage phagocytosis assay. in Methods in Mouse Atherosclerosis (Springer, 2015).
Koval, M., Preiter, K., Adles, C., Stahl, P. D. & Steinberg, T. H. Size of IgG-opsonized particles determines macrophage response during internalization. Exp. Cell Res. 242, 265–273 (1998).
Acknowledgements
The authors thank Eva Schmid and Emily Suter for their help in refining the protocol, Sungmin Son for technical consulting and the entire Fletcher Laboratory for feedback and advice. This work was supported by the Immunotherapeutics and Vaccine Research Initiative (IVRI) at UC Berkeley and by the NSF Center for Cellular Construction. A.M.J. was funded by the Siebel Scholars Program. M.H.B. was funded by an NSF Graduate Research Fellowship and the Siebel Scholars Program. D.A.F. is a Chan-Zuckerberg Biohub investigator.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Protocols thanks Philip van der Merwe, Suzan Rooijakkers, Eva M. Struijf and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
Key reference using this protocol
Bakalar, M. H. et al. Cell 174, 131–142.e13 (2018): https://doi.org/10.1016/j.cell.2018.05.059
Extended data
Extended data Figure 1 Quality control checks for reconstituted targets.
a, Example images of reconstituted targets formed with DPPC-containing bilayers and POPC bilayers that have been opsonized with fluorescent antibody. Properly prepared targets should have uniform coverage of lipids and conjugated proteins. Scale bar: 5 µm. b, TIRF microscopy time courses of fluorescence recovery after photobleaching, demonstrating recovery for fluid bilayers made from POPC and no recovery for non-fluid bilayers made from DPPC. Scale bar: 25 µm. c, TIRF microscopy time courses of fluorescence recovery after photobleaching the bottom of beads coated with lipid bilayers. Fluorescence recovery is observed for fluid bilayers made from POPC, and no recovery is observed for non-fluid bilayers made from DPPC. Scale bar: 2 µm. d, Quantification of fluorescence recovery for the beads shown in c.
Extended data Figure 2 Measuring absolute density of fluorescent molecules on reconstituted target surfaces.
a, A histogram of fluorescence intensity for four samples of fluorescent beads of known MESF value for Alexa Fluor 488 obtained using flow cytometry. b, Calibration line constructed from plotting the intensity values obtained from flow cytometry and the known MESF value of the beads. The equation for the line of best fit can be used to convert flow cytometry measurements to absolute counts of Alexa Fluor 488 fluorophores, provided that all measurements are performed using the same flow cytometry settings. If the number of fluorophores per molecule of interest (i.e., protein or antibody) is known, along with the surface area of the reconstituted target, an absolute measurement of surface density for the molecule of interest can be obtained.
Supplementary information
Supplementary Information
Supplementary Figs. 1 and 2.
Supplementary Software
CellProfiler project file.
Rights and permissions
About this article
Cite this article
Joffe, A.M., Bakalar, M.H. & Fletcher, D.A. Macrophage phagocytosis assay with reconstituted target particles. Nat Protoc 15, 2230–2246 (2020). https://doi.org/10.1038/s41596-020-0330-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41596-020-0330-8
This article is cited by
-
Engineering water exchange is a safe and effective method for magnetic resonance imaging in diverse cell types
Journal of Biological Engineering (2024)
-
Cell membrane-based nanomaterials for theranostics of central nervous system diseases
Journal of Nanobiotechnology (2023)
-
Nanoscale imaging of CD47 informs how plasma membrane modifications shape apoptotic cell recognition
Communications Biology (2023)
-
Membrane fusion studied by colloidal probes
European Biophysics Journal (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.