Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

In vivo compression and imaging in mouse brain to measure the effects of solid stress

Abstract

We recently developed an in vivo compression device that simulates the solid mechanical forces exerted by a growing tumor on the surrounding brain tissue and delineates the physical versus biological effects of a tumor. This device, to our knowledge the first of its kind, can recapitulate the compressive forces on the cerebellar cortex from primary (e.g., glioblastoma) and metastatic (e.g., breast cancer) tumors, as well as on the cerebellum from tumors such as medulloblastoma and ependymoma. We adapted standard transparent cranial windows normally used for intravital imaging studies in mice to include a turnable screw for controlled compression (acute or chronic) and decompression of the cerebral cortex. The device enables longitudinal imaging of the compressed brain tissue over several weeks or months as the screw is progressively extended against the brain tissue to recapitulate tumor growth–induced solid stress. The cranial window can be simply installed on the mouse skull according to previously established methods, and the screw mechanism can be readily manufactured in-house. The total time for construction and implantation of the in vivo compressive cranial window is <1 h (per mouse). This technique can also be used to study a variety of other diseases or disorders that present with abnormal solid masses in the brain, including cysts and benign growths.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tumor progression and brain loss are consequences of both physical and biological interactions at the tumor–brain interface.
Fig. 2: The in vivo compressive cranial window is capable of decoupling mechanical stresses from biological stresses at the tumor–brain interface.
Fig. 3: Compressive cranial window recapitulates the compressed brain tissue caused by brain tumors.
Fig. 4: Surgical procedure for implanting a cCW.
Fig. 5: Timing and experimental design of cCW.
Fig. 6: The cCW allows for intravital imaging.
Fig. 7: Procedure for fabrication of a cCW.
Fig. 8: Chronic compression results in cellular biological responses that can be quantified via histological and molecular techniques.
Fig. 9: Chronic compression results in behavioral responses that can be quantified via different functional tests.

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author upon request.

Code availability

The code associated with the datasets generated and/or analyzed during the current study is available from the corresponding author upon request.

References

  1. Jain, R. K., Martin, J. D. & Stylianopoulos, T. The role of mechanical forces in tumor growth and therapy. Annu. Rev. Biomed. Eng. 16, 321–346 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Mitchell, M. J., Jain, R. K. & Langer, R. Engineering and physical sciences in oncology: challenges and opportunities. Nat. Rev. Cancer 17, 659–675 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Helmlinger, G. et al. Solid stress inhibits the growth of multicellular tumor spheroids. Nat. Biotechnol. 15, 778–783 (1997).

    CAS  PubMed  Google Scholar 

  4. Stylianopoulos, T. et al. Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proc. Natl Acad. Sci. USA 109, 15101–15108 (2012).

    CAS  PubMed  Google Scholar 

  5. Nia, H. T. et al. Solid stress and elastic energy as measures of tumour mechanopathology. Nat. Biomed. Eng. 1, 0004 (2016).

    PubMed  PubMed Central  Google Scholar 

  6. Padera, T. P. et al. Pathology: cancer cells compress intratumour vessels. Nature 427, 695 (2004).

    CAS  PubMed  Google Scholar 

  7. Chauhan, V. P. et al. Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat. Commun. 4, 2516 (2013).

    PubMed  PubMed Central  Google Scholar 

  8. Chauhan, V. P. et al. Compression of pancreatic tumor blood vessels by hyaluronan is caused by solid stress and not interstitial fluid pressure. Cancer Cell 26, 14–15 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Tse, J. M. et al. Mechanical compression drives cancer cells toward invasive phenotype. Proc. Natl Acad. Sci. USA 109, 911–916 (2012).

    CAS  PubMed  Google Scholar 

  10. Ricca, B. L. et al. Transient external force induces phenotypic reversion of malignant epithelial structures via nitric oxide signaling. Elife 7, e26161 (2018).

    PubMed  PubMed Central  Google Scholar 

  11. Montel, F. et al. Stress clamp experiments on multicellular tumor spheroids. Phys. Rev. Lett. 107, 188102 (2011).

    PubMed  Google Scholar 

  12. Delarue, M. et al. Compressive stress inhibits proliferation in tumor spheroids through a volume limitation. Biophys. J. 107, 1821–1828 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fernández-Sánchez, M. E. et al. Mechanical induction of the tumorigenic β-catenin pathway by tumour growth pressure. Nature 523, 92–95 (2015).

    PubMed  Google Scholar 

  14. Seano, G. et al. Solid stress in brain tumours causes neuronal loss and neurological dysfunction and can be reversed by lithium. Nat. Biomed. Eng. 3, 230–245 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Nia, H. T. et al. Quantifying solid stress and elastic energy from excised or in situ tumors. Nat. Protoc. 13, 1091–1105 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Amidei, C. & Kushner, D. S. Clinical implications of motor deficits related to brain tumors. Neurooncol. Prac. 2, 179–184 (2015).

    Google Scholar 

  17. Mukand, J. A. et al. Incidence of neurologic deficits and rehabilitation of patients with brain tumors. Am. J. Phys. Med. Rehabil. 80, 346–350 (2001).

    CAS  PubMed  Google Scholar 

  18. Kushner, D. S. & Amidei, C. Rehabilitation of motor dysfunction in primary brain tumor patients. Neurooncol. Prac. 2, 185–191 (2015).

    Google Scholar 

  19. Sawaya, R. et al. Neurosurgical outcomes in a modern series of 400 craniotomies for treatment of parenchymal tumors. Neurosurgery 42, 1044–1055 (1998). discussion 1055-1056.

    CAS  PubMed  Google Scholar 

  20. Rees, J. H. Diagnosis and treatment in neuro-oncology: an oncological perspective. Br. J. Radiol. 84(Spec. No. 2), S82–S89 (2011).

    PubMed  Google Scholar 

  21. Farago, N. et al. Human neuronal changes in brain edema and increased intracranial pressure. Acta Neuropathol. Commun. 4, 78 (2016).

    PubMed  PubMed Central  Google Scholar 

  22. Goriely, A. et al. Mechanics of the brain: perspectives, challenges, and opportunities. Biomech. Model. Mechanobiol. 14, 931–965 (2015).

    PubMed  PubMed Central  Google Scholar 

  23. Unterberg, A. W. et al. Edema and brain trauma. Neuroscience 129, 1021–1029 (2004).

    CAS  PubMed  Google Scholar 

  24. de Groot, J. & Sontheimer, H. Glutamate and the biology of gliomas. Glia 59, 1181–1189 (2011).

    PubMed  Google Scholar 

  25. Sontheimer, H. A role for glutamate in growth and invasion of primary brain tumors. J. Neurochem. 105, 287–295 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Savaskan, N. E. et al. Neurodegeneration in the brain tumor microenvironment: glutamate in the limelight. Curr. Neuropharmacol. 13, 258–265 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Huisman, T. A. Tumor-like lesions of the brain. Cancer Imaging 9(Special Issue A), S10–S13 (2009).

    PubMed  PubMed Central  Google Scholar 

  28. Cunliffe, C. H. et al. Intracranial lesions mimicking neoplasms. Arch. Pathol. Lab. Med. 133, 101–123 (2009).

    PubMed  Google Scholar 

  29. Askoxylakis, V. et al. A cerebellar window for intravital imaging of normal and disease states in mice. Nat. Protoc. 12, 2251–2262 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Snuderl, M. et al. Targeting placental growth factor/neuropilin 1 pathway inhibits growth and spread of medulloblastoma. Cell 152, 1065–1076 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bar-Kochba, E. et al. Strain and rate-dependent neuronal injury in a 3D in vitro compression model of traumatic brain injury. Sci. Rep. 6, 30550 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lusardi, T. A. et al. Effect of acute calcium influx after mechanical stretch injury in vitro on the viability of hippocampal neurons. J. Neurotrauma 21, 61–72 (2004).

    PubMed  Google Scholar 

  33. Pfister, B. J. et al. An in vitro uniaxial stretch model for axonal injury. Ann. Biomed. Eng. 31, 589–598 (2003).

    PubMed  Google Scholar 

  34. Teixeira, F. G. et al. Bioengineered cell culture systems of central nervous system injury and disease. Drug Discov. Today 21, 1456–1463 (2016).

    CAS  PubMed  Google Scholar 

  35. Schoeler, M. et al. Dexmedetomidine is neuroprotective in an in vitro model for traumatic brain injury. BMC Neurol. 12, 20 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Morrison, B. III et al. An in vitro model of traumatic brain injury utilising two-dimensional stretch of organotypic hippocampal slice cultures. J. Neurosci. Methods 150, 192–201 (2006).

    PubMed  Google Scholar 

  37. Xu, B. N. et al. Pathophysiology of brain swelling after acute experimental brain compression and decompression. Neurosurgery 32, 289–296 (1993). discussion 296.

    CAS  PubMed  Google Scholar 

  38. Miller, J. D., Stanek, A. E. & Langfitt, T. W. Cerebral blood flow regulation during experimental brain compression. J. Neurosurg. 39, 186–196 (1973).

    CAS  PubMed  Google Scholar 

  39. Leech, P. & Miller, J. D. Intracranial volume–pressure relationships during experimental brain compression in primates: 1. Pressure responses to changes in ventricular volume. J. Neurol. Neurosurg. Psychiatry 37, 1093–1098 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. De la Torre, J. C. et al. Dimethyl sulfoxide in the treatment of experimental brain compression. J. Neurosurg. 38, 345–354 (1973).

    PubMed  Google Scholar 

  41. Sullivan, H. G. et al. The physiological basis of intracranial pressure change with progressive epidural brain compression. An experimental evaluation in cats. J. Neurosurg. 47, 532–550 (1977).

    CAS  PubMed  Google Scholar 

  42. Schettini, A. & Walsh, E. K. Brain tissue elastic behavior and experimental brain compression. Am. J. Physiol. 255(5 Pt 2), R799–R805 (1988).

    CAS  PubMed  Google Scholar 

  43. Schettini, A. & Walsh, E. K. Brain elastic behavior in experimental brain compression: influence of steroid therapy. Brain Res. 305, 141–143 (1984).

    CAS  PubMed  Google Scholar 

  44. Calabrese, E. et al. A diffusion MRI tractography connectome of the mouse brain and comparison with neuronal tracer data. Cereb. Cortex 25, 4628–4637 (2015).

    PubMed  PubMed Central  Google Scholar 

  45. Kober, F., Duhamel, G. & Callot, V. Cerebral perfusion MRI in mice, in In Vivo NMR Imaging 117-138 (Springer, New York, 2011).

  46. Kearney, S. P. et al. Simultaneous 3D MR elastography of the in vivo mouse brain. Phys. Med. Biol. 62, 7682–7693 (2017).

    CAS  PubMed  Google Scholar 

  47. Kamoun, W. S. et al. Simultaneous measurement of RBC velocity, flux, hematocrit and shear rate in vascular networks. Nat. Methods 7, 655–660 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Fukumura, D. et al. Tumor microvasculature and microenvironment: novel insights through intravital imaging in pre-clinical models. Microcirculation 17, 206–225 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Jain, R. K., Munn, L. L. & Fukumura, D. Dissecting tumour pathophysiology using intravital microscopy. Nat. Rev. Cancer 2, 266–276 (2002).

    CAS  PubMed  Google Scholar 

  50. Blatter, C. et al. Simultaneous measurements of lymphatic vessel contraction, flow and valve dynamics in multiple lymphangions using optical coherence tomography. J. Biophotonics Vol. 11, e201700017 (2018).

    Google Scholar 

  51. Blatter, C. et al. In vivo label-free measurement of lymph flow velocity and volumetric flow rates using Doppler optical coherence tomography. Sci. Rep. 6, 29035 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Vakoc, B. J. et al. Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat. Med. 15, 1219–1223 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kamoun, W. S. et al. Edema control by cediranib, a vascular endothelial growth factor receptor–targeted kinase inhibitor, prolongs survival despite persistent brain tumor growth in mice. J. Clin. Oncol. 27, 2542–2552 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Boucher, Y. et al. Interstitial fluid pressure in intracranial tumours in patients and in rodents. Br. J. Cancer 75, 829–836 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Brooks, S. P., Trueman, R. C. & Dunnett, S. B. Assessment of motor coordination and balance in mice using the Rotarod, elevated bridge, and footprint tests. Curr. Protoc. Mouse Biol. 2, 37–53 (2012).

    PubMed  Google Scholar 

  56. Arvanitis, C. D. et al. Mechanisms of enhanced drug delivery in brain metastases with focused ultrasound-induced blood–tumor barrier disruption. Proc. Natl Acad. Sci. USA 115, e8717–e8726 (2018).

  57. Dong, H. W. The Allen Reference Atlas: A Digital Color Brain Atlas of the C57Bl/6J Male Mouse ix, 366 (Wiley, 2008).

Download references

Acknowledgements

This work was supported in part by the National Cancer Institute (P01-CA080124, R35-CA197743, U01-CA224173, and R01-CA208205 to R.K.J.; F32-CA216944 to H.T.N), the American Association of Cancer Research (19-40-50-DATT to M.D.), the Susan G. Komen Foundation (PDF14201739 to G.S.), and the European Research Council (ERC; 805225 to G.S.). R.K.J.’s research is also supported by grants from the National Foundation for Cancer Research, Harvard Ludwig Center, Jane’s Trust Foundation, and the Bill and Melinda Gates Foundation.

Author information

Authors and Affiliations

Authors

Contributions

H.T.N., M.D., G.S., W.W.H., S.R., P.H., L.L.M., and R.K.J. designed the study; H.T.N., M.D., G.S., S.R., and P.H. acquired the data. H.T.N., M.D., G.S., and R.K.J. contributed to analysis and interpretation of the data. H.T.N., M.D., G.S., S.Z., W.W.H., S.R., P.H., L.L.M., and R.K.J. were involved in drafting the article and revising it for important intellectual content.

Corresponding author

Correspondence to Rakesh K. Jain.

Ethics declarations

Competing interests

R.K.J. received an honorarium from Amgen; consultant fees from Chugai, Enlight, Merck, Ophthotech, Pfizer, SPARC, SynDevRx, and XTuit; owns equity in Enlight, Ophthotech, and SynDevRx; and serves on the boards of trustees of Tekla Healthcare Investors, Tekla Life Sciences Investors, Tekla Healthcare Opportunities Fund, and Tekla World Healthcare Fund. No funding or reagents from these companies were used in this study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Seano, G. et al. Nat. Biomed. Eng. 3, 230–245 (2019): https://doi.org/10.1038/s41551-018-0334-7

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nia, H.T., Datta, M., Seano, G. et al. In vivo compression and imaging in mouse brain to measure the effects of solid stress. Nat Protoc 15, 2321–2340 (2020). https://doi.org/10.1038/s41596-020-0328-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-020-0328-2

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer