Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Synthesis of high-molar-activity [18F]6-fluoro-l-DOPA suitable for human use via Cu-mediated fluorination of a BPin precursor

Abstract

[18F]6-fluoro-l-DOPA ([18F]FDOPA) is a diagnostic radiopharmaceutical for positron emission tomography (PET) imaging that is used to image Parkinson’s disease, brain tumors, and focal hyperinsulinism of infancy. Despite these important applications, [18F]FDOPA PET remains underutilized because of synthetic challenges associated with accessing the radiotracer for clinical use; these stem from the need to radiofluorinate a highly electron-rich catechol ring in the presence of an amino acid. To address this longstanding challenge in the PET radiochemistry community, we have developed a one-pot, two-step synthesis of high-molar-activity [18F]FDOPA by Cu-mediated fluorination of a pinacol boronate (BPin) precursor. The method is fully automated, has been validated to work well at two separate sites (an academic facility with a cyclotron on site and an industry lab purchasing [18F]fluoride from an outside vendor), and provides [18F]FDOPA in reasonable radiochemical yield (2.44 ± 0.70 GBq, 66 ± 19 mCi, 5 ± 1%), excellent radiochemical purity (>98%) and high molar activity (76 ± 30 TBq/mmol, 2,050 ± 804 Ci/mmol), n = 26. Herein we report a detailed protocol for the synthesis of [18F]FDOPA that has been successfully implemented at two sites and validated for production of the radiotracer for human use.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Radiosyntheses of [18F]FDOPA and motivation for this work.
Fig. 2: Radiosyntheses of [18F]FDOPA and the TRACERLab automated synthesis module.
Fig. 3: Semi-preparative HPLC traces for [18F]FDOPA prepared using two different methods.
Fig. 4: Analytical HPLC traces of [18F]FDOPA using a Luna NH2 analytical column.
Fig. 5: Chiral HPLC trace of production of [18F]FDOPA, 6F-d,l-DOPA reference standard, and [6F]-l-DOPA reference standard using a Chirobiotic T analytical column.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its Supplementary Information files).

References

  1. Ametamey, S. M. et al. Molecular imaging with PET. Chem. Rev. 108, 1501–1516 (2008).

    CAS  PubMed  Google Scholar 

  2. Taïeb, D. et al. 18F-DOPA: the versatile radiopharmaceutical. Eur. J. Nucl. Med. Mol. Imaging 43, 1187–1189 (2016).

    PubMed  Google Scholar 

  3. Pretze, M., Wängler, C. & Wängler, B. 6-[18F]Fluoro-L-DOPA: a well-established neurotracer with expanding application spectrum and strongly improved radiosyntheses. Biomed. Res. Int. 2014, 674063 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Garnett, E. S. et al. Dopamine visualized in the basal ganglia of living man. Nature 305, 137–138 (1983).

    CAS  PubMed  Google Scholar 

  5. Darcourt, J. et al. 18F-FDOPA PET for the diagnosis of parkinsonian syndromes. Q. J. Nucl. Med. Mol. Imaging 58, 355–365 (2014).

    CAS  PubMed  Google Scholar 

  6. Calabria, F. & Cascini, G. L. Current status of 18F-DOPA PET imaging in the detection of brain tumor recurrence. Hell. J. Nucl. Med. 18, 152–156 (2015).

    PubMed  Google Scholar 

  7. Nandu, H. Imaging in neuro-oncology. Ther. Adv. Neurol. Dis. 11, 1–19 (2018).

    Google Scholar 

  8. Shah, P. et al. Persistent hyperinsulinaemic hypoglycaemia in infancy. Semin. Pediatr. Surg. 23, 76–82 (2014).

    PubMed  Google Scholar 

  9. Luxen, A. et al. Remote, semiautomated production of 6-[18F]fluoro-L-dopa for human studies with PET. Appl. Radiat. Isot 41, 275–281 (1990).

    CAS  Google Scholar 

  10. Füchtner, F. et al. Aspects of 6-[18F]fluoro-L-DOPA preparation. Deuterochloroform as a substitute solvent for Freon 11. Nuklearmedizin 47, 62–64 (2008).

    PubMed  Google Scholar 

  11. Luurtsema, G. et al. Improved GMP-compliant multi-dose production and quality control of 6-[18F]fluoro-L-DOPA. EJNMMI Radiopharm. Chem. 1, 7 (2017).

    CAS  PubMed  Google Scholar 

  12. Lemaire, C. et al. Highly enantioselective synthesis of no‐carrier‐added 6-[18F]fluoro-L-dopa by chiral phase-transfer alkylation. Eur. J. Org. Chem. 2004, 2899–2904 (2004).

    Google Scholar 

  13. Shen, B. et al. Automated synthesis of n.c.a. [18F]FDOPA via nucleophilic aromatic substitution with [18F]fluoride. Appl. Radiat. Isot. 67, 1650–1653 (2009).

    CAS  PubMed  Google Scholar 

  14. Lemaire, C. et al. Automated production at the Curie level of no-carrier-added 6-[18F]fluoro-L-dopa and 2-[18F]fluoro-L-tyrosine on a FASTlab synthesizer. J. Labelled Compd. Radiopharm. 58, 281–290 (2015).

    CAS  Google Scholar 

  15. Libert, L. C. et al. Production at the Curie kevel of no-carrier-added 6-18F-fluoro-L-dopa. J. Nucl. Med. 54, 1154–1161 (2013).

    CAS  PubMed  Google Scholar 

  16. Tierling, T. et al. A new nucleophilic asymmetric synthesis of 6-[18F]fluoro-DOPA. J. Labelled Compd. Radiopharm. 44(Suppl. 1), S146–S148 (2001).

    Google Scholar 

  17. Wagner, F. M. et al. Three-step, “one-pot” radiosynthesis of 6-fluoro-3,4-dihydroxy-L-phenylalanine by isotopic exchange. J. Nucl. Med. 50, 1724–1729 (2009).

    CAS  PubMed  Google Scholar 

  18. Sauvage, C. et al. Synthesis of 18F-FDOPA via nucleophilic pathway on IBA’s Synthera®. J. Labelled Compd. Radiopharm. 58(Suppl. 1), S164 (2015).

    Google Scholar 

  19. ABX. Reagents kits. http://www.abx.de/Information/Index?viewId=Synthesizer (accessed 28 February 2020).

  20. Trasis. [18F]FDOPA nucleophlic process. http://www.trasis.com/tracers/18ffdopa (accessed 28 February 2020).

  21. Brooks, A. F. et al. Late-stage [18F]fluorination: new solutions to old problems. Chem. Sci. 5, 4545–4553 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Campbell, M. G. & Ritter, T. Modern carbon–fluorine bond forming reactions for aryl fluoride synthesis. Chem. Rev. 115, 612–633 (2015).

    CAS  PubMed  Google Scholar 

  23. Preshlock, S. et al. 18F-labeling of arenes and heteroarenes for applications in positron emission tomography. Chem. Rev. 116, 719–766 (2016).

    CAS  PubMed  Google Scholar 

  24. Deng, X. et al. Chemistry for positron emission tomography: recent advances in 11C-, 18F-, 13N-, and 15O-labeling reactions. Angew. Chem. Int. Ed. 58, 2580–2605 (2019).

    CAS  Google Scholar 

  25. Ichiishi, N. et al. Copper-catalyzed [18F]fluorination of (mesityl)(aryl)iodonium salts. Org. Lett. 16, 3224–3227 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rotstein, B. H. et al. Spirocyclic hypervalentiIodine(III)-mediated radiofluorination of non-activated and hindered aromatics. Nature Commun. 5, 4365 (2014).

    CAS  Google Scholar 

  27. Liang, S. H. et al. Facile 18F labeling of non-activated arenes via a spirocyclic iodonium (III) ylide method and its application in the synthesis of the mGluR5 PET radiopharmaceutical [18F]FPEB. Nat. Prot. 14, 1530–1545 (2019).

    CAS  Google Scholar 

  28. Pike, V. W. Hypervalent aryliodine compounds as precursors for radiofluorination. J. Label. Compd. Radiopharm. 61, 196–227 (2018).

    CAS  Google Scholar 

  29. Tredwell, M. et al. A general copper-mediated nucleophilic 18F-fluorination of arenes. Angew. Chem., Int. Ed. 53, 7751–7755 (2014).

    CAS  Google Scholar 

  30. Mossine, A. V. et al. Synthesis of [18F]Arenes via the Copper-Mediated [18F]Fluorination of Boronic Acids. Org. Lett. 17, 5780–5783 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Makaravage, K. J. et al. Copper-mediated tradiofluorination of arylstannanes with [18F]KF. Org. Lett. 18, 5440–5443 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee, E. A fluoride-derived electrophilic late-stage fluorination reagent for PET imaging. Science 334, 639–642 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee, E. Nickel-mediated oxidative fluorination for PET with aqueous [18F]fluoride. J. Am. Chem. Soc. 134, 17456–17458 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Neumann, C. N. et al. Concerted nucleophilic aromatic substitution with 19F and 18F. Nature 534, 369–373 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ichiishi, N. et al. Cu-catalyzed fluorination of diaryliodonium salts with KF. Org. Lett. 15, 5134–5137 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ye, Y. et al. Cu(OTf)2-mediated fluorination of aryltrifluoroborates with potassium fluoride. J. Am. Chem. Soc. 135, 16292–16295 (2013).

    CAS  PubMed  Google Scholar 

  37. Lee, S. J. et al. Copper-mediated aminoquinoline-directed radiofluorination of aromatic C-H bonds with K18F. Angew. Chem. Int. Ed. 58, 3119–3122 (2019).

    CAS  Google Scholar 

  38. Preshlock, S. et al. Enhanced copper-mediated 18F-fluorination of aryl boronic esters provides eight radiotracers for PET applications. Chem. Commun. 52, 8361–8364 (2016).

    CAS  Google Scholar 

  39. Maisonial-Besset, A. et al. Base/cryptand/metal‐free automated nucleophilic radiofluorination of [18F]FDOPA from iodonium salts: importance of hydrogen carbonate counterion. Eur. J. Org. Chem. 2018, 7058–7065 (2018).

    CAS  Google Scholar 

  40. Kuik, W.-J. et al. In vivo biodistribution of no-carrier-added 6-18F-fluoro-3,4-dihydroxy-L-phenylalanine (18F-DOPA), produced by a new nucleophilic substitution approach, compared with carrier-added 18F-DOPA, prepared by conventional electrophilic substitution. J Nucl. Med. 56, 106–112 (2015).

    CAS  PubMed  Google Scholar 

  41. Zarrad, F. et al. A practical method for the preparation of 18F-labeled aromatic amino acids from nucleophilic [18F]fluoride and stannyl precursors for electrophilic radiohalogenation. Molecules 22, 2231 (2017).

    PubMed Central  Google Scholar 

  42. Zischler, J. et al. Alcohol-enhanced Cu-mediated radiofluorination. Chem. Eur. J. 23, 3251–3256 (2017).

    CAS  PubMed  Google Scholar 

  43. Mossine, A. V. et al. One-pot synthesis of high molar activity 6-[18F]fluoro-l-DOPA by Cu-mediated fluorination of a BPin precursor. Org. Biomol. Chem. 17, 8701–8705 (2019).

    CAS  PubMed  Google Scholar 

  44. McCann, S. D. & Stahl, S. S. Copper-catalyzed aerobic oxidations of organic molecules: pathways for two-electron oxidation with a four-electron oxidant and a one-electron redox-active catalyst. Acc. Chem. Res. 48, 1756–1766 (2015).

    CAS  PubMed  Google Scholar 

  45. Allen, S. E. et al. Aerobic copper-catalyzed organic reactions. Chem. Rev. 113, 6234–6458 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Mossine, A. V. et al. Automated synthesis of PET radiotracers by copper-mediated 18F-fluorination of organoborons: importance of the order of addition and competing protodeborylation. J. Labelled Compd. Radiopharm. 61, 228–236 (2018).

    CAS  Google Scholar 

  47. Schäfer, D. et al. Preparation of no-carrier-added 6-[18F]fluoro-l-tryptophan via Cu-mediated radiofluorination. Eur. J. Org. Chem. 2016, 4621–4628 (2016).

    Google Scholar 

  48. Connelly, J. ICH Q3C impurities: guideline for residual solvents in ICH Quality Guidelines: An Implementation Guide (eds Teasdale, A., Elder, D. & Nims, R. W.) pp 199-232 (Wiley, Hoboken, 2018).

  49. Bregoff, H. M. et al. Paper chromatography of quaternary ammonium bases and related compounds. J. Biol. Chem. 205, 565–574 (1953).

    CAS  PubMed  Google Scholar 

  50. Mossine, A. V. et al. Development of customized [18F]fluoride elution techniques for the enhancement of copper-mediated late-stage radiofluorination. Sci. Rep. 7, 233 (2017).

    PubMed  PubMed Central  Google Scholar 

  51. Zlatopolskiy, B. D. et al. Copper-mediated aromatic radiofluorination revisited: efficient production of PET tracers on a preparative scale. Chem. Eur. J. 21, 5972–5979 (2015).

    CAS  PubMed  Google Scholar 

  52. Zhang, Z. et al. One-step synthesis of 4-[18F]fluorobenzyltriphenylphosphonium cation for imaging with positron emission tomography. J. Labelled Compd. Radiopharm. 59, 467–471 (2016).

    CAS  Google Scholar 

  53. Antunes, I. F. et al. Synthesis and evaluation of the estrogen receptor β−selective radioligand 2-18F-fluoro-6-(6-hydroxynaphthalen-2-yl)pyridin-3-ol: comparison with 16α-18F-fluoro-17β-estradiol. J. Nucl. Med. 58, 554–559 (2017).

    CAS  PubMed  Google Scholar 

  54. Tang, T. et al. Preparation and evaluation of L- and D-5-[18F]fluorotryptophan as PET imaging probes for indoleamine and tryptophan 2,3-dioxygenases. Nucl. Med. Biol. 51, 10–17 (2017).

    CAS  PubMed  Google Scholar 

  55. Zhang, Z. et al. Design, synthesis and evaluation of 18F-labeled cationic carbonic anhydrase IX inhibitors for PET imaging. J. Enzyme Inhib. Med. Chem 32, 722–730 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kaide, S. et al. Conversion of iodine to fluorine-18 based on iodinated chalcone and evaluation for β-amyloid PET imaging. Bioorg. Med. Chem. 26, 3352–3358 (2018).

    CAS  PubMed  Google Scholar 

  57. Constantinescu, C. C. et al. Development and in vivo preclinical imaging of fluorine-18-labeled synaptic vesicle protein 2A (SV2A) PET tracers. Mol. Imaging Biol. 21, 509–518 (2019).

    CAS  PubMed  Google Scholar 

  58. Cole, E. et al. Radiochemistry challenges and progression for incorporation of 18F into a complex substituted 6-18F-fluoroquinoline BMS-986205 for IDO imaging. J. Nucl. Med. 59(Suppl. 1), 605 (2018).

    Google Scholar 

  59. Bernard-Gauthier, V. et al. Identification of [18F]TRACK, a fluorine-18-labeled tropomyosin receptor kinase (Trk) inhibitor for PET imaging. J. Med. Chem. 61, 1737–1743 (2018).

    CAS  PubMed  Google Scholar 

  60. Elie, J. et al. Design of selective COX-2 inhibitors in the (aza)indazole series. Chemistry, in vitro studies, radiochemistry and evaluations in rats of a [18F] PET tracer. J. Enzyme Inhib. Med. Chem. 34, 1–7 (2019).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the NIH (R01EB021155 to M.S.S. and P.J.H.S.) and US DOE/NIBIB (DE-SC0012484 to P.J.H.S.) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

A.V.M., A.F.B., N.I., P.J.H.S., and M.S.S. conceived and developed the original radiofluorination of organoborons used herein to prepare [18F]FDOPA. T.E. and C.B. synthesized BPin precursor 1. A.V.M., S.S.T., A.F.B., K.J.M., N.I., J.M.M., and M.B.S. performed radiofluorination reactions. B.D.H. and M.B.S. performed QC testing. M.S.S. and P.J.H.S. provided supervision and funding. All authors analyzed data and participated in the writing and editing of the manuscript.

Corresponding authors

Correspondence to Melanie S. Sanford or Peter J. H. Scott.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Bernd Neumaier and the other, anonymous, reviewer(s) for their contribution to the peer review of this work

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Mossine A. V. et al. Org. Biomol. Chem. 17, 8701–8705 (2019): https://doi.org/10.1039/C9OB01758E

Key data used in this protocol

Mossine A. V. et al. Org. Biomol. Chem. 17, 8701–8705 (2019): https://doi.org/10.1039/C9OB01758E

Integrated supplementary information

Supplementary Figure 1

Standard TRACERLab FXFN Configuration for One-pot Synthesis of [18F]FDOPA (reproduced with permission of GE Healthcare).

Supplementary Figure 2

Modified TRACERLab FXFN Configuration for alternative synthesis of [18F]FDOPA with HLB purification between fluorination and deprotection (Adapted from Supplementary Fig. 1 and reproduced with permission of GE Healthcare).

Supplementary Figure 3 Analytical trace (RAD top, 282 nm UV bottom) of [18F]FDOPA at end-of-synthesis.

Column: Luna NH2 5 micron 4.6x150 mm column; mobile phase: 70% MeCN 10 mM KOAc, pH 5.2; flow rate: 1.5 mL/min. [18F]FDOPA prepared using alternative synthesis with HLB purification between fluorination and deprotection.

Supplementary Figure 4 Analytical trace (RAD top, 282 nm UV bottom) of [18F]FDOPA 4 h post-end-of-synthesis.

Column: Luna NH2 5 micron 4.6 × 150 mm column; mobile phase: 70% MeCN 10 mM KOAc, pH 5.2; flow rate: 1.5 mL/min. [18F]FDOPA prepared using alternative synthesis with HLB purification between fluorination and deprotection.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4 and Supplementary Methods 1 and 2.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mossine, A.V., Tanzey, S.S., Brooks, A.F. et al. Synthesis of high-molar-activity [18F]6-fluoro-l-DOPA suitable for human use via Cu-mediated fluorination of a BPin precursor. Nat Protoc 15, 1742–1759 (2020). https://doi.org/10.1038/s41596-020-0305-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-020-0305-9

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing