Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Generation of synthetic nanobodies against delicate proteins

Abstract

Here, we provide a protocol to generate synthetic nanobodies, known as sybodies, against any purified protein or protein complex within a 3-week period. Unlike methods that require animals for antibody generation, sybody selections are carried out entirely in vitro under controlled experimental conditions. This is particularly relevant for the generation of conformation-specific binders against labile membrane proteins or protein complexes and allows selections in the presence of non-covalent ligands. Sybodies are especially suited for cases where binder generation via immune libraries fails due to high sequence conservation, toxicity or insufficient stability of the target protein. The procedure entails a single round of ribosome display using the sybody libraries encoded by mRNA, followed by two rounds of phage display and binder identification by ELISA. The protocol is optimized to avoid undesired reduction in binder diversity and enrichment of non-specific binders to ensure the best possible selection outcome. Using the efficient fragment exchange (FX) cloning method, the sybody sequences are transferred from the phagemid to different expression vectors without the need to amplify them by PCR, which avoids unintentional shuffling of complementary determining regions. Using quantitative PCR (qPCR), the efficiency of each selection round is monitored to provide immediate feedback and guide troubleshooting. Our protocol can be carried out by any trained biochemist or molecular biologist using commercially available reagents and typically gives rise to 10–30 unique sybodies exhibiting binding affinities in the range of 500 pM–500 nM.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sybody libraries.
Fig. 2: Sybody selection flowchart.
Fig. 3: Overview of genetic constructs and primers.
Fig. 4: Exemplary DNA gel of sybody pools.
Fig. 5: SEC analysis of sybodies.
Fig. 6: A conformation-specific sybody against the ABC transporter TM287/288.
Fig. 7: Structure of the KDEL receptor in complex with a sybody.

Similar content being viewed by others

Data availability

All plasmids have been deposited on Addgene. The sybody libraries can be obtained from the authors via an academic material transfer agreement.

References

  1. Ries, J., Kaplan, C., Platonova, E., Eghlidi, H. & Ewers, H. A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat. Methods 9, 582–584 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Rothbauer, U. et al. Targeting and tracing antigens in live cells with fluorescent nanobodies. Nat. Methods 3, 887–889 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Manglik, A., Kobilka, B. K. & Steyaert, J. Nanobodies to study G protein-coupled receptor structure and function. Annu. Rev. Pharmacol. Toxicol. 57, 19–37 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Harmansa, S., Alborelli, I., Bieli, D., Caussinus, E. & Affolter, M. A nanobody-based toolset to investigate the role of protein localization and dispersal in Drosophila. Elife 6, e22549 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bukowska, M. A. & Grutter, M. G. New concepts and aids to facilitate crystallization. Curr. Opin. Struct. Biol. 23, 409–416 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Kirchhofer, A. et al. Modulation of protein properties in living cells using nanobodies. Nat. Struct. Mol. Biol. 17, 133–138 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Bräuer, P. et al. Structural basis for pH-dependent retrieval of ER proteins from the Golgi by the KDEL receptor. Science 363, 1103–1107 (2019).

    Article  PubMed  CAS  Google Scholar 

  8. Kaur, H. et al. Identification of conformation-selective nanobodies against the membrane protein insertase BamA by an integrated structural biology approach. J. Biomol. NMR 73, 375–384 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Nevoltris, D. et al. Conformational nanobodies reveal tethered epidermal growth factor receptor involved in EGFR/ErbB2 predimers. ACS Nano 9, 1388–1399 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Vazquez-Lombardi, R. et al. Challenges and opportunities for non-antibody scaffold drugs. Drug Discov. Today 20, 1271–1283 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Hamers-Casterman, C. et al. Naturally occurring antibodies devoid of light chains. Nature 363, 446–448 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. De Genst, E. et al. Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc. Natl Acad. Sci. USA 103, 4586–4591 (2006).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Kruse, A. C. et al. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504, 101–106 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rasmussen, S. G. et al. Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature 469, 175–180 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Henry, K. A. & MacKenzie, C. R. Antigen recognition by single-domain antibodies: structural latitudes and constraints. MAbs 10, 815–826 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Muyldermans, S. Nanobodies: natural single-domain antibodies. Annu. Rev. Biochem. 82, 775–797 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Pardon, E. et al. A general protocol for the generation of Nanobodies for structural biology. Nat. Protoc. 9, 674–693 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zimmermann, I. et al. Synthetic single domain antibodies for the conformational trapping of membrane proteins. Elife 7, e34317 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bradbury, A. R. M., Sidhu, S., Dubel, S. & McCafferty, J. Beyond natural antibodies: the power of in vitro display technologies. Nat. Biotechnol. 29, 245–254 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hutter, C. A. J. et al. The extracellular gate shapes the energy profile of an ABC exporter. Nat. Commun. 10, 2260 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Arbabi Ghahroudi, M., Desmyter, A., Wyns, L., Hamers, R. & Muyldermans, S. Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett. 414, 521–526 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Verheesen, P. et al. Reliable and controllable antibody fragment selections from Camelid non-immune libraries for target validation. Biochim. Biophys. Acta 1764, 1307–1319 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Olichon, A. & de Marco, A. Preparation of a naïve library of camelid single domain antibodies. Methods Mol. Biol. 911, 65–78 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Monegal, A. et al. Immunological applications of single-domain llama recombinant antibodies isolated from a naïve library. Protein Eng. Des. Sel. 22, 273–280 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Moutel, S. et al. NaLi-H1: a universal synthetic library of humanized nanobodies providing highly functional antibodies and intrabodies. Elife 5, e16228 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Geertsma, E. R. et al. Structure of a prokaryotic fumarate transporter reveals the architecture of the SLC26 family. Nat. Struct. Mol. Biol. 22, 803–808 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Egloff, P. et al. Engineered peptide barcodes for in-depth analyses of binding protein libraries. Nat. Methods 16, 421–428 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ehrnstorfer, I. A., Geertsma, E. R., Pardon, E., Steyaert, J. & Dutzler, R. Crystal structure of a SLC11 (NRAMP) transporter reveals the basis for transition-metal ion transport. Nat. Struct. Mol. Biol. 21, 990–996 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Prado, N. D. et al. Inhibition of the myotoxicity induced by Bothrops jararacussu venom and isolated phospholipases A2 by specific camelid single-domain antibody fragments. PLoS One 11, e0151363 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Koch, K. et al. Selection of nanobodies with broad neutralizing potential against primary HIV-1 strains using soluble subtype C gp140 envelope trimers. Sci. Rep. 7, 8390 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Hussack, G., Arbabi-Ghahroudi, M., Mackenzie, C. R. & Tanha, J. Isolation and characterization of Clostridium difficile toxin-specific single-domain antibodies. Methods Mol. Biol. 911, 211–239 (2012).

    CAS  PubMed  Google Scholar 

  32. McMahon, C. et al. Yeast surface display platform for rapid discovery of conformationally selective nanobodies. Nat. Struct. Mol. Biol. 25, 289–296 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yan, J. R., Li, G. H., Hu, Y. H., Ou, W. J. & Wan, Y. K. Construction of a synthetic phage-displayed Nanobody library with CDR3 regions randomized by trinucleotide cassettes for diagnostic applications. J. Transl. Med. 12, 343 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Sircar, A., Sanni, K. A., Shi, J. & Gray, J. J. Analysis and modeling of the variable region of camelid single-domain antibodies. J. Immunol. 186, 6357–6367 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Dumoulin, M. et al. Single-domain antibody fragments with high conformational stability. Protein Sci. 11, 500–515 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Govaert, J. et al. Dual beneficial effect of interloop disulfide bond for single domain antibody fragments. J. Biol. Chem. 287, 1970–1979 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Ring, A. M. et al. Adrenaline-activated structure of beta2-adrenoceptor stabilized by an engineered nanobody. Nature 502, 575–579 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kuhn, B. T. et al. Biotinylation of membrane proteins for binder selections. Methods Mol. Biol. 2127, 151–165 (2020).

    Article  PubMed  CAS  Google Scholar 

  39. Zahnd, C., Amstutz, P. & Plückthun, A. Ribosome display: selecting and evolving proteins in vitro that specifically bind to a target. Nat. Methods 4, 269–279 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Shimizu, Y. et al. Cell-free translation reconstituted with purified components. Nat. Biotechnol. 19, 751–755 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Geertsma, E. R. & Dutzler, R. A versatile and efficient high-throughput cloning tool for structural biology. Biochemistry 50, 3272–3278 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Geertsma, E. R. FX cloning: a simple and robust high-throughput cloning method for protein expression. Methods Mol. Biol. 1116, 153–164 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Sidhu, S. S., Lowman, H. B., Cunningham, B. C. & Wells, J. A. Phage display for selection of novel binding peptides. Methods Enzymol. 328, 333–363 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. McCafferty, J., Griffiths, A. D., Winter, G. & Chiswell, D. J. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552–554 (1990).

    Article  CAS  PubMed  Google Scholar 

  45. Zahnd, C., Sarkar, C. A. & Pluckthun, A. Computational analysis of off-rate selection experiments to optimize affinity maturation by directed evolution. Protein Eng. Des. Sel. 23, 175–184 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Seeger, M. A. et al. Design, construction, and characterization of a second-generation DARPin library with reduced hydrophobicity. Protein Sci. 22, 1239–1257 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Huber, T., Steiner, D., Röthlisberger, D. & Plückthun, A. In vitro selection and characterization of DARPins and Fab fragments for the co-crystallization of membrane proteins: the Na+-citrate symporter CitS as an example. J. Struct. Biol. 159, 206–221 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Garza, J. A., Taylor, A. B., Sherwood, L. J., Hart, P. J. & Hayhurst, A. Unveiling a drift resistant cryptotope within Marburgvirus nucleoprotein recognized by llama single-domain antibodies. Front. Immunol. 8, 1234 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Zabetakis, D., Anderson, G. P., Bayya, N. & Goldman, E. R. Contributions of the complementarity determining regions to the thermal stability of a single-domain antibody. PLoS One 8, e77678 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hussack, G. et al. Neutralization of Clostridium difficile toxin A with single-domain antibodies targeting the cell receptor binding domain. J. Biol. Chem. 286, 8961–8976 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Casadaban, M. J. & Cohen, S. N. Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J. Mol. Biol. 138, 179–207 (1980).

    Article  CAS  PubMed  Google Scholar 

  52. Hohl, M., Briand, C., Grütter, M. G. & Seeger, M. A. Crystal structure of a heterodimeric ABC transporter in its inward-facing conformation. Nat. Struct. Mol. Biol. 19, 395–402 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Hohl, M. et al. Structural basis for allosteric cross-talk between the asymmetric nucleotide binding sites of a heterodimeric ABC exporter. Proc. Natl Acad. Sci. USA 111, 11025–11030 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Timachi, M. H. et al. Exploring conformational equilibria of a heterodimeric ABC transporter. Elife 6, e20236 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lu, F. et al. Structure and mechanism of the uracil transporter UraA. Nature 472, 243–246 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Yu, X. et al. Dimeric structure of the uracil:proton symporter UraA provides mechanistic insights into the SLC4/23/26 transporters. Cell Res. 27, 1020–1033 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cull, M. G. & Schatz, P. J. Biotinylation of proteins in vivo and in vitro using small peptide tags. Methods Enzymol. 326, 430–440 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank all members of the Seeger and Geertsma laboratoriess for scientific discussions. We acknowledge Jenifer Cuesta Bernal for critical reading. E.R.G. acknowledges financial support from the German Research Foundation via the Cluster of Excellence Frankfurt (Macromolecular Complexes) and the CRC807 (Transport and Communication across Biological Membranes). Work in the Seeger group was supported by an SNSF Professorship of the Swiss National Science Foundation (PP00P3_144823, to M.A.S.), an SNSF NRP 72 grant (407240_177368, to M.A.S.), an SNSF BRIDGE proof-of-concept grant (20B1-1_175192, to P.E.) and a BioEntrepreneur-Fellowship of the University of Zurich (BIOEF-17-002, to I.Z.). R.J.P.D, E.R.G., and M.A.S. acknowledge a grant from the Commission for Technology and Innovation CTI (16003.1 PFLS-LS). Work in the group of S.N. was supported by a Wellcome award (102890/Z/13/Z).

Author information

Authors and Affiliations

Authors

Contributions

M.A.S., E.R.G. and R.J.P.D. conceived the sybody project. E.R.G. and M.A.S. designed the sybody library. I.Z. and P.E. established the sybody selection platform. C.A.J.H. established the ELISA setup. I.Z., C.A.J.H., B.T.K., P.B. and E.R.G. selected sybodies against protein targets. I.Z., S.N., E.R.G. and M.A.S. supervised students and postdocs. I.Z., B.T.K., E.R.G. and M.A.S. wrote the manuscript. P.E., C.A.J.H., S.N. and R.J.P.D. edited the manuscript.

Corresponding authors

Correspondence to Eric R. Geertsma or Markus A. Seeger.

Ethics declarations

Competing interests

The authors declare competing financial interests. I.Z., P.E., R.J.P.D. and M.A.S. are co-founders and shareholders of Linkster Therapeutics AG.

Additional information

Peer review information Nature Protocols thanks Serge Muyldermans, Jamshid Tanha and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Zimmermann, I. et al. Elife 7, e34317 (2018): https://doi.org/10.7554/eLife.34317

Hutter, C. et al. Nat. Commun. 10, 2260 (2019): https://doi.org/10.1038/s41467-019-09892-6

Bräuer, P. et al. Science 363, 1103–1107 (2019): https://doi.org/10.1126/science.aaw2859

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimmermann, I., Egloff, P., Hutter, C.A.J. et al. Generation of synthetic nanobodies against delicate proteins. Nat Protoc 15, 1707–1741 (2020). https://doi.org/10.1038/s41596-020-0304-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-020-0304-x

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research