Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A well plate–based multiplexed platform for incorporation of organoids into an organ-on-a-chip system with a perfusable vasculature


Owing to their high spatiotemporal precision and adaptability to different host cells, organ-on-a-chip systems are showing great promise in drug discovery, developmental biology studies and disease modeling. However, many current micro-engineered biomimetic systems are limited in technological application because of culture media mixing that does not allow direct incorporation of techniques from stem cell biology, such as organoids. Here, we describe a detailed alternative method to cultivate millimeter-scale functional vascularized tissues on a biofabricated platform, termed ‘integrated vasculature for assessing dynamic events’, that enables facile incorporation of organoid technology. Utilizing the 3D stamping technique with a synthetic polymeric elastomer, a scaffold termed ‘AngioTube’ is generated with a central microchannel that has the mechanical stability to support a perfusable vascular system and the self-assembly of various parenchymal tissues. We demonstrate an increase in user familiarity and content analysis by situating the scaffold on a footprint of a 96-well plate. Uniquely, the platform can be used for facile connection of two or more tissue compartments in series through a common vasculature. Built-in micropores enable the studies of cell invasion involved in both angiogenesis and metastasis. We describe how this protocol can be applied to create both vascularized cardiac and hepatic tissues, metastatic breast cancer tissue and personalized pancreatic cancer tissue through incorporation of patient-derived organoids. Platform assembly to populating the scaffold with cells of interest into perfusable functional vascularized tissue will require 12–14 d and an additional 4 d if pre-polymer and master molds are needed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dimensions of the InVADE platform and AngioTube bioscaffolds.
Fig. 2: Polymer synthesis setup and assessment of the 1,2,4 pre-polymer.
Fig. 3: Microfabrication of master molds for the AngioTube scaffold and base plate using photoresist and a soft lithography technique.
Fig. 4: Microfabrication of the AngioTube scaffold through the 3D stamping technique.
Fig. 5: Assembly of the InVADE platform.
Fig. 6: Vascularization and parenchymal tissue seeding around the AngioTube scaffold on an InVADE platform.
Fig. 7: Engineering functional vascularized 3D tissues on the InVADE platform.
Fig. 8: Engineering integrated organ-on-a-chip microdevices with a duo-organ InVADE platform for cancer metastasis study.

Similar content being viewed by others

Data availability

All data presented in this paper are available from the original references, the source data files supplied with this publication and the corresponding author. Source data are provided with this paper.


  1. DiMasi, J. A., Grabowski, H. G. & Hansen, R. W. Innovation in the pharmaceutical industry: new estimates of R&D costs. J. Health Econ. 47, 20–33 (2016).

    Article  PubMed  Google Scholar 

  2. Kinch, M. S. & Merkel, J. An analysis of FDA-approved drugs for inflammation and autoimmune diseases. Drug Discov. Today 20, 920–923 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Ben-David, U. et al. Patient-derived xenografts undergo mouse-specific tumor evolution. Nat. Genet. 49, 1567–1575 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cekanova, M. & Rathore, K. Animal models and therapeutic molecular targets of cancer: utility and limitations. Drug Des. Devel. Ther. 8, 1911–1921 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Danhof, M., de Lange, E. C., Della Pasqua, O. E., Ploeger, B. A. & Voskuyl, R. A. Mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) modeling in translational drug research. Trends Pharmacol. Sci. 29, 186–191 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Dahan, A., Beig, A., Lindley, D. & Miller, J. M. The solubility-permeability interplay and oral drug formulation design: two heads are better than one. Adv. Drug Deliv. Rev. 101, 99–107 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Ghane Shahrbaf, F. & Assadi, F. Drug-induced renal disorders. J. Renal Inj. Prev. 4, 57–60 (2015).

    PubMed  PubMed Central  Google Scholar 

  8. Wu, H. & Huang, J. Drug-induced nephrotoxicity: pathogenic mechanisms, biomarkers and prevention strategies. Curr. Drug Metab. 19, 559–567 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Sorrentino, M. F., Kim, J., Foderaro, A. E. & Truesdell, A. G. 5-fluorouracil induced cardiotoxicity: review of the literature. Cardiol. J. 19, 453–458 (2012).

    Article  PubMed  Google Scholar 

  10. Deavall, D. G., Martin, E. A., Horner, J. M. & Roberts, R. Drug-induced oxidative stress and toxicity. J. Toxicol. 2012, 645460 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Yamanaka, S. Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 10, 678–684 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Drost, J. & Clevers, H. Organoids in cancer research. Nat. Rev. Cancer 18, 407–418 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Fatehullah, A., Tan, S. H. & Barker, N. Organoids as an in vitro model of human development and disease. Nat. Cell Biol. 18, 246–254 (2016).

    Article  PubMed  CAS  Google Scholar 

  14. Dutta, D., Heo, I. & Clevers, H. Disease modeling in stem cell-derived 3D organoid systems. Trends Mol. Med. 23, 393–410 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huh, D. et al. Microfabrication of human organs-on-chips. Nat. Protoc. 8, 2135–2157 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Esch, E. W., Bahinski, A. & Huh, D. Organs-on-chips at the frontiers of drug discovery. Nat. Rev. Drug Discov. 14, 248–260 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, B., Korolj, A., Lai, B. F. L. & Radisic, M. Advances in organ-on-a-chip engineering. Nat. Rev. Mater. 3, 257–278 (2018).

    Article  Google Scholar 

  19. Jo, B.-H., Van Lerberghe, L. M., Motsegood, K. M. & Beebe, D. J. Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. J. Microelectromech. Syst. 9, 76–81 (2000).

    Article  CAS  Google Scholar 

  20. Berthier, E., Young, E. W. & Beebe, D. Engineers are from PDMS-land, biologists are from Polystyrenia. Lab Chip 12, 1224–1237 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. van Meer, B. J. et al. Small molecule absorption by PDMS in the context of drug response bioassays. Biochem. Biophys. Res. Commun. 482, 323–328 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Zhang, B. et al. Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surfical anastomosis. Nat. Mater. 15, 669–678 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lai, B. F. L., Davenport Huyer, L., Lu, R. X. Z., Drecun, S. & Radisic, M. InVADE: integrated vasculature for assessing dynamic events. Adv. Funct. Mater. 27, 1703524 (2017).

    Article  CAS  Google Scholar 

  24. Sung, J. H., Kam, C. & Shuler, M. L. A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip. Lab Chip 10, 446–455 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Trietsch, S. J., Israels, G. D., Joore, J., Hankemeier, T. & Vulto, P. Microfluidic titer plate for stratified 3D cell culture. Lab Chip 13, 3548–3554 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Trietsch, S. J. et al. Membrane-free culture and real-time barrier integrity assessment of perfused intestinal epithelium tubes. Nat. Commun. 8, 262 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Wang, Y. I. & Shuler, M. L. UniChip enables long-term recirculating unidirectional perfusion with gravity-driven flow for microphysiological systems. Lab Chip 18, 2563–2574 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang, B. et al. Microfabrication of AngioChip, a biodegradable polymer scaffold with microfluidic vasculature. Nat. Protoc. 13, 1793–1813 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Davenport Huyer, L. et al. Highly elastic and moldable polyester biomaterial for cardiac tissue engineering applications. ACS Biomater. Sci. Eng. 2, 780–788 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, B. & Radisic, M. Organ-on-a-chip devices advance to market. Lab Chip 17, 2395–2420 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Frey, O., Misun, P. M., Fluri, D. A., Hengstler, J. G. & Hierlemann, A. Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis. Nat. Commun. 5, 4250 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Schimek, K. et al. Integrating biological vasculature into a multi-organ-chip microsystem. Lab Chip 13, 3588–3598 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Oleaga, C. et al. Multi-organ toxicity demonstration in a functioal human in vitro system composed of four organs. Sci. Rep. 6, 20030 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miller, P. G. & Shuler, M. L. Design and demonstration of a pumpless 14 compartment microphysiological system. Biotechnol. Bioeng. 113, 2213–2227 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, Y. S. et al. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proc. Natl Acad. Sci. USA 114, E2293–E2302 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Edington, C. D. et al. Interconnected microphysiological systems for quantitative biology and pharmacology studies. Sci. Rep. 8, 4530 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Park, D. Y., Lee, J., Chung, J. J., Jung, Y. & Kim, S. H. Integrating organs-on-chips: multiplexing, scaling, vasculatization and innnervation. Trends Biotechnol. 38, 99–112 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Lian, X. et al. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat. Protoc. 8, 162–175 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Boj, S. F. et al. Organoid models of human and mouse ductal pancreatic cancer. Cell 160, 324–338 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Lai, B. F. L. et al. Recapitulating pancreatic tumor microenvironment through synergistic use of patient organoids and organ-on-a-chip vasculature. Adv. Funct. Mater. 30, 2000545 (2020).

    Article  CAS  Google Scholar 

  41. Caggiati, A., Phillips, M., Lametschwandtner, A. & Allegra, C. Valves in small veins and venules. Eur. J. Vasc. Endovasc. Surg. 32, 447–452 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. dela Paz, N. G. & D’Amore, P. A. Arterial versus venous endothelial cells. Cell Tissue Res. 335, 5–16 (2009).

    Article  Google Scholar 

  43. Adamson, R. H., Huxley, V. H. & Curry, F.-R. E. Single capillary permeability to proteins having similar size but different charge. Am. J. Physiol. Heart Circ. Physiol. 254, H304–H312 (1988).

    Article  CAS  Google Scholar 

  44. Curry, F.-R. E. & Adamson, R. H. Vascular permeability modulation at the cell, microvessel, or whole organ level: towards closing gaps in our knowledge. Cardiol. Res. 87, 218–229 (2010).

    Article  CAS  Google Scholar 

  45. Chiu, L. L., Montgomery, M., Liang, Y., Liu, H. & Radisic, M. Perfusable branching microvessel bed for vascularization of engineered tissues. Proc. Natl Acad. Sci. USA 109, E3414–E3423 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Salcedo, R. et al. Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells: in vivo neovascularization induced by stromal-derived factor-1α. Am. J. Pathol. 154, 1125–1135 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Betz, C., Lenard, A., Belting, H. G. & Affolter, M. Cell behaviors and dynamics during angiogenesis. Development 143, 2249–2260 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Yeon, J. H., Ryu, H. R., Chung, M., Hu, Q. P. & Jeon, N. L. In vitro formation and characterization of a perfusable three-dimensional tubular capillary network in microfluidic devices. Lab Chip 12, 2815–2822 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Oh, S. et al. “Open-top” microfluidic device for in vitro three-dimensional capillary beds. Lab Chip 17, 3405–3414 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Hsu, Y.-H., Moya, M. L., Hughes, C. C. W., George, S. C. & Lee, A. P. A microfluidic platform for generating large-scale nearly identical human microphysiological vascularized tissue arrays. Lab Chip 13, 2990–2998 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jeon, J. S. et al. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proc. Natl Acad. Sci. USA 112, 214–219 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Phan, D. T. T. et al. A vascularized and perfused organ-on-a-chip platform for large-scale drug screening applications. Lab Chip 17, 511–520 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lin, D. S. Y., Rajasekar, S., Marway, M. K. & Zhang, B. From model system to therapy: scalable production of perfusable vascularized liver spheroids in “open-top“ 384-well plate. ACS Biomater. Sci. Eng. (2020).

  54. Zhao, Y. et al. A platform for generation of chamber-specific cardiac tissues and disease modeling. Cell 176, 913–927.e18 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references


This work was funded by the Canadian Institutes of Health Research (CIHR) Operating Grants (MOP-126027, MOP-137107 and MOP-142382), Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant (RGPIN 326982-10), NSERC-CIHR Collaborative Health Research Grant (CHRP 493737-16), CIHR Foundation Grant (FDN-167274) and National Institutes of Health Grant 2R01 HL076485. M.R. was supported by a Canada Research Chair and Killam Fellowship, B.F.L.L. and R.X.Z.L. were supported by a NSERC Postgraduate Fellowship and L.D.H. was supported by a CIHR Vanier Scholarship.

Author information

Authors and Affiliations



B.F.L.L., B.Z. and M.R. designed the research. B.F.L.L. and L.D.H. performed the research. B.F.L.L. analyzed the data. B.F.L.L., S.K., L.D.H. and R.X.Z.L prepared the figures. B.F.L.L., R.X.Z.L. and J.Y. prepared the supplementary videos. B.F.L.L., L.D.H. and M.R. wrote and edited the manuscript. B.F.L.L. and E.Y.W. prepared the fluorescent images. Q.W. provided the induced-pluripotent stem cell–derived cardiomyocytes for cardiac tissue engineering.

Corresponding author

Correspondence to Milica Radisic.

Ethics declarations

Competing interests

M.R. and B.Z. are among the co-founders of TARA Biosystems, and they hold equity in this company. The AngioTube bioscaffold is licensed to TARA Biosystems. The remaining authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Christopher C. W. Hughes, Noo Li Jeon and Ibrahim Tarik Ozbolat for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Lai, B. F. L. et al. Adv. Funct. Mat. 27, 1703524 (2017):

Lai, B. F. L. et al. Adv. Funct. Mat. 30, 2000545 (2020):

Lu, R. X. Z. et al. Adv. Mat. Tech. (2020):

Supplementary information

Supplementary Information

Supplementary Figs. 1–5 and Supplementary Text 1.

Supplementary Video 1

Preparation of AngioTube scaffolds before the cleanroom.

Supplementary Video 2

Assembling AngioTube scaffolds with 3D stamping.

Supplementary Video 3

Hot-embossing of InVADE base plates.

Supplementary Video 4

Assembling InVADE plates.

Supplementary Video 5

Endothelialization of the AngioTube scaffold lumen on the InVADE platform.

Supplementary Video 6

Tracking cancer metastasis on a duo-organ model of the InVADE platform.

Supplementary Video 7

Perfusion of 1-µm FITC beads in the InVADE platform.

Supplementary Data 1

Photomasks for soft lithography microfabrication.

Source data

Source Data Fig. 2

Excel data for the stress-strain curve of the 2:3 version of the 1,2,4 polymer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, B.F.L., Lu, R.X.Z., Davenport Huyer, L. et al. A well plate–based multiplexed platform for incorporation of organoids into an organ-on-a-chip system with a perfusable vasculature. Nat Protoc 16, 2158–2189 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research