Characterization of connective tissues using near-infrared spectroscopy and imaging

Abstract

Near-infrared (NIR) spectroscopy is a powerful analytical method for rapid, non-destructive and label-free assessment of biological materials. Compared to mid-infrared spectroscopy, NIR spectroscopy excels in penetration depth, allowing intact biological tissue assessment, albeit at the cost of reduced molecular specificity. Furthermore, it is relatively safe compared to Raman spectroscopy, with no risk of laser-induced photothermal damage. A typical NIR spectroscopy workflow for biological tissue characterization involves sample preparation, spectral acquisition, pre-processing and analysis. The resulting spectrum embeds intrinsic information on the tissue’s biomolecular, structural and functional properties. Here we demonstrate the analytical power of NIR spectroscopy for exploratory and diagnostic applications by providing instructions for acquiring NIR spectra, maps and images in biological tissues. By adapting and extending this protocol from the demonstrated application in connective tissues to other biological tissues, we expect that a typical NIR spectroscopic study can be performed by a non-specialist user to characterize biological tissues in basic research or clinical settings. We also describe how to use this protocol for exploratory study on connective tissues, including differentiating among ligament types, non-destructively monitoring changes in matrix formation during engineered cartilage development, mapping articular cartilage proteoglycan content across bovine patella and spectral imaging across the depth-wise zones of articular cartilage and subchondral bone. Depending on acquisition mode and experiment objectives, a typical exploratory study can be completed within 6 h, including sample preparation and data analysis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2: Schematic description of NIR spectroscopy workflow.
Fig. 3
Fig. 4: Near-infrared fiber optic probe.
Fig. 5: Diagrammatic illustration of the steps required for NIR spectroscopic mapping of specific target features on the desired tissue area.
Fig. 6: Effect of different pre-processing options and their combinations on NIR spectral data.
Fig. 7: NIR spectroscopy of tissue-engineered cartilage.
Fig. 8: Mapping the proteoglycan content across bovine patella articular surface.
Fig. 9: NIR spectral imaging of bone and cartilage.

Data availability

The source data underlying Figs. 79 and Supplementary Fig. 1 are provided as Source Data files. Raw imaging files (Fig. 9 and Supplementary Fig. 1) can be opened with MATLAB via the MIA toolbox add-on. Source data for Fig. 6 can be obtained from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

nippy, the Python package used for spectral pre-processing in Fig. 6, is open source and available at https://github.com/uef-bbc/nippy under the MIT license.

References

  1. 1.

    Blanco, M. & Villarroya, I. NIR spectroscopy: a rapid-response analytical tool. Trends Anal. Chem. 21, 240–250 (2002).

  2. 2.

    Shenk, J. S., Workman Jr, J. J. & Westerhaus, O. Application of NIR spectroscopy to agricultural products. in Handbook of Near-Infrared Analysis (eds. Burns, D. A. & Ciurczak, E. W.) 347–386 (Marcel Dekker, 2008).

  3. 3.

    Anderson, C. A., Drennen, J. K. & Ciurczak, E. W. Pharmaceutical applications of near-infrared spectroscopy. in Handbook of Near-Infrared Analysis (eds. Burns, D. A. & Ciurczak, E. W.) 585–612 (Marcel Dekker, 2008).

  4. 4.

    Urbas, A. A. & Lodder, R. A. Near-infrared spectrometry in cardiovascular disease. in Handbook of Near-Infrared Analysis (eds. Burns, D. A. & Ciurczak, E. W.) 657–672 (Marcel Dekker, 2008).

  5. 5.

    Du, Y. P., Kasemsumran, S., Jiang, J.-H. & Ozaki, Y. In vivo and in vitro near-infrared spectroscopic determination of blood glucose and other biomedical components with chemometrics. in Handbook of Near-Infrared Analysis (eds. Burns, D. A. & Ciurczak, E. W.) 673–698 (Marcel Dekker, 2008).

  6. 6.

    Spahn, G. et al. Near-infrared spectroscopy for arthroscopic evaluation of cartilage lesions: results of a blinded, prospective, interobserver study. Am. J. Sports Med. 38, 2516–2521 (2010).

    PubMed  Google Scholar 

  7. 7.

    Afara, I. O. et al. Near infrared spectroscopy for rapid determination of Mankin score components: a potential tool for quantitative characterization of articular cartilage at surgery. Arthroscopy 30, 1146–1155 (2014).

    PubMed  Google Scholar 

  8. 8.

    Sarin, J. K. et al. Arthroscopic determination of cartilage proteoglycan content and collagen network structure with near-infrared spectroscopy. Ann. Biomed. Eng. 47, 1815–1826 (2019).

  9. 9.

    Huck, C., Ozaki, Y. & Huck-Pezzei, V. Critical review upon the role and potential of fluorescence and near-infrared imaging and absorption spectroscopy in cancer related cells, serum, saliva, urine and tissue analysis. Curr. Med. Chem. 23, 3052–3077 (2016).

    CAS  PubMed  Google Scholar 

  10. 10.

    Laimer, J. et al. Amalgam tattoo versus melanocytic neoplasm—differential diagnosis of dark pigmented oral mucosa lesions using infrared spectroscopy. PLoS One 13, 1–14 (2018).

    Google Scholar 

  11. 11.

    Siesler, H. W. Basic principles of near-infrared spectroscopy. in Handbook of Near-Infrared Analysis (eds. Burns, D. A. & Ciurczak, E. W.) 7–20 (Marcel Dekker, 2008).

  12. 12.

    Baker, M. J. et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nat. Protoc. 9, 1771–1791 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Santos, M. C. D., Nascimento, Y. M., Araújo, J. M. G. & Lima, K. M. G. ATR-FTIR spectroscopy coupled with multivariate analysis techniques for the identification of DENV-3 in different concentrations in blood and serum: a new approach. RSC Adv 7, 25640–25649 (2017).

    CAS  Google Scholar 

  14. 14.

    Afara, I., Singh, S. & Oloyede, A. Application of near infrared (NIR) spectroscopy for determining the thickness of articular cartilage. Med. Eng. Phys. 35, 88–95 (2013).

    CAS  PubMed  Google Scholar 

  15. 15.

    Afara, I., Prasadam, I., Crawford, R., Xiao, Y. & Oloyede, A. Non-destructive evaluation of articular cartilage defects using near-infrared (NIR) spectroscopy in osteoarthritic rat models and its direct relation to Mankin score. Osteoarthritis Cartilage 20, 1367–1373 (2012).

    CAS  PubMed  Google Scholar 

  16. 16.

    Sakudo, A. et al. A novel diagnostic method for human immunodeficiency virus type-1 in plasma by near-infrared spectroscopy. Microbiol. Immunol. 49, 695–701 (2005).

    CAS  PubMed  Google Scholar 

  17. 17.

    Afara, I. O., Hauta-Kasari, M., Jurvelin, J. S., Oloyede, A. & Töyräs, J. Optical absorption spectra of human articular cartilage correlate with biomechanical properties, histological score and biochemical composition. Physiol. Meas. 36, 1913–1928 (2015).

    PubMed  Google Scholar 

  18. 18.

    Palukuru, U. P., McGoverin, C. M. & Pleshko, N. Assessment of hyaline cartilage matrix composition using near infrared spectroscopy. Matrix Biol 38, 3–11 (2014).

    CAS  PubMed  Google Scholar 

  19. 19.

    Palukuru, U. P. et al. Near infrared spectroscopic imaging assessment of cartilage composition: validation with mid infrared imaging spectroscopy. Anal. Chim. Acta 926, 79–87 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Sarin, J. K. et al. Near infrared spectroscopic mapping of functional properties of equine articular cartilage. Ann. Biomed. Eng. 44, 3335–3345 (2016).

    PubMed  Google Scholar 

  21. 21.

    Afara, I. O., Moody, H., Singh, S., Prasadam, I. & Oloyede, A. Spatial mapping of proteoglycan content in articular cartilage using near-infrared (NIR) spectroscopy. Biomed. Opt. Express 6, 144–154 (2015).

    PubMed  Google Scholar 

  22. 22.

    Ciurczak, E. W. Biomedical applications of near-infrared spectroscopy. in Handbook of Near-Infrared Analysis (eds. Burns, D. A. & Ciurczak, E. W.) 647–655 (Marcel Dekker, 2008).

  23. 23.

    Bale, G., Mitra, S., Meek, J., Robertson, N. & Tachtsidis, I. A new broadband near-infrared spectroscopy system for in-vivo measurements of cerebral cytochrome-c-oxidase changes in neonatal brain injury. Biomed. Opt. Express 5, 3450 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Gunadi, S., Leung, T. S., Elwell, C. E. & Tachtsidis, I. Spatial sensitivity and penetration depth of three cerebral oxygenation monitors. Biomed. Opt. Express 5, 2896 (2014).

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Torricelli, A. et al. Time domain functional NIRS imaging for human brain mapping. Neuroimage 85, 28–50 (2014).

    PubMed  Google Scholar 

  26. 26.

    Wabnitz, H. et al. Time-resolved near-infrared spectroscopy and imaging of the adult human brain. in Advances in Experimental Medicine and Biology 143–148 (Springer, 2010).

  27. 27.

    Dehaes, M. et al. Cerebral oxygen metabolism in neonatal hypoxic ischemic encephalopathy during and after therapeutic hypothermia. J. Cereb. Blood Flow Metab. 34, 87–94 (2014).

    CAS  PubMed  Google Scholar 

  28. 28.

    Mitra, S., Bale, G., Meek, J., Tachtsidis, I. & Robertson, N. J. Cerebral near infrared spectroscopy monitoring in term infants with hypoxic ischemic encephalopathy—a systematic review. Front. Neurol. 11, 393 (2020).

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Kleiser, S. et al. Comparison of tissue oximeters on a liquid phantom with adjustable optical properties: an extension. Biomed. Opt. Express 9, 86 (2018).

    CAS  PubMed  Google Scholar 

  30. 30.

    Sangani, S., Lamontagne, A. & Fung, J. Cortical mechanisms underlying sensorimotor enhancement promoted by walking with haptic inputs in a virtual environment. in Progress in Brain Research 313–330 (Elsevier, 2015).

  31. 31.

    Shah, N. J. et al. Quantitative cerebral water content mapping in hepatic encephalopathy. Neuroimage 41, 706–717 (2008).

    CAS  PubMed  Google Scholar 

  32. 32.

    Padalkar, M. V., Spencer, R. G. & Pleshko, N. Near infrared spectroscopic evaluation of water in hyaline cartilage. Ann. Biomed. Eng. 41, 2426–2436 (2013).

    CAS  PubMed  Google Scholar 

  33. 33.

    Kraats, E. B., van de, Munćan, J. & Tsenkova, R. N. Aquaphotomics – origin, concept, applications and future perspectives. Substantia 3, 13–28 (2019).

    Google Scholar 

  34. 34.

    Tsenkova, R., Kovacs, Z. & Kubota, Y. Aquaphotomics: near infrared spectroscopy and water states in biological systems. Subcell. Biochem 71, 189–211 (2015).

    CAS  PubMed  Google Scholar 

  35. 35.

    Tsenkova, R., Muncan, J., Pollner, B. & Kovacs, Z. Essentials of aquaphotomics and its chemometrics approaches. Front. Chem. 6, 363 (2018).

  36. 36.

    Tuchin, V. V. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, 2007).

  37. 37.

    Jacques, S. L. Optical properties of biological tissues: a review. Phys. Med. Biol. 58, 5007–5008 (2013).

    Google Scholar 

  38. 38.

    Faris, F. et al. Noninvasive in vivo near-infrared optical measurement of the penetration depth in the neonatal head. Clin. Phys. Physiol. Meas. 12, 353–358 (1991).

    CAS  PubMed  Google Scholar 

  39. 39.

    Sordillo, L. A., Pu, Y., Pratavieira, S., Budansky, Y. & Alfano, R. R. Deep optical imaging of tissue using the second and third near-infrared spectral windows. J. Biomed. Opt. 19, 056004 (2014).

    PubMed  Google Scholar 

  40. 40.

    Afara, I., Prasadam, I., Crawford, R., Xiao, Y. & Oloyede, A. Near infrared (NIR) absorption spectra correlates with subchondral bone micro-CT parameters in osteoarthritic rat models. Bone 53, 350–357 (2013).

    PubMed  Google Scholar 

  41. 41.

    Afara, I. O. et al. Characterizing human subchondral bone properties using near-infrared (NIR) spectroscopy. Sci. Rep. 8, 9733 (2018).

  42. 42.

    Sarin, J. K. et al. Arthroscopic near infrared spectroscopy enables simultaneous quantitative evaluation of articular cartilage and subchondral bone in vivo. Sci. Rep. 8, 13409 (2018).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Afara, I. O., Singh, S., Moody, H., Zhang, L. & Oloyede, A. Characterization of articular cartilage recovery and its correlation with optical response in the near-infrared spectral range. Cartilage 8, 307–316 (2016).

  44. 44.

    Afara, I., Singh, S. & Oloyede, A. Load-unloading response of intact and artificially degraded articular cartilage correlated with near infrared (NIR) absorption spectra. J. Mech. Behav. Biomed. Mater. 20, 249–258 (2013).

    CAS  PubMed  Google Scholar 

  45. 45.

    Prakash, M. et al. Near-infrared spectroscopy enables quantitative evaluation of human cartilage biomechanical properties during arthroscopy. Osteoarthritis Cartilage 27, 1235–1243 (2019).

    CAS  PubMed  Google Scholar 

  46. 46.

    Spahn, G. et al. Evaluation of cartilage defects with near-infrared spectroscopy (NIR): an ex vivo study. Med. Eng. Phys. 30, 285–292 (2008).

    PubMed  Google Scholar 

  47. 47.

    Sarin, J. K. et al. Combination of optical coherence tomography and near infrared spectroscopy enhances determination of articular cartilage composition and structure. Sci. Rep. 7, 10586 (2017).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Afara, I. O., Prasadam, I., Arabshahi, Z., Xiao, Y. & Oloyede, A. Monitoring osteoarthritis progression using near infrared (NIR) spectroscopy. Sci. Rep. 7, 11463 (2017).

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Ala-Myllymäki, J., Honkanen, J. T. J., Töyräs, J. & Afara, I. O. Optical spectroscopic determination of human meniscus composition. J. Orthop. Res. 34, 270–278 (2016).

    PubMed  Google Scholar 

  50. 50.

    Ala-Myllymäki, J. et al. Optical spectroscopic characterization of human meniscus biomechanical properties. J. Biomed. Opt. 22, 1–10 (2017).

    PubMed  Google Scholar 

  51. 51.

    Torniainen, J. et al. Near infrared spectroscopic evaluation of ligament and tendon biomechanical properties. Ann. Biomed. Eng. 47, 213–222 (2019).

    PubMed  Google Scholar 

  52. 52.

    Prakash, M., Sarin, J. K., Rieppo, L., Afara, I. O. & Töyräs, J. Optimal regression method for near-infrared spectroscopic evaluation of articular cartilage. Appl. Spectrosc. 71, 2253–2262 (2017).

  53. 53.

    Prakash, M., Sarin, J. K., Rieppo, L., Afara, I. O. & Töyräs, J. Accounting for spatial dependency in multivariate spectroscopic data. Chemom. Intell. Lab. Syst. 182, 166–171 (2018).

    CAS  Google Scholar 

  54. 54.

    Sarin, J. K. et al. Multimodality scoring of chondral injuries in the equine fetlock joint ex vivo. Osteoarthritis Cartilage 25, 790–798 (2017).

    CAS  PubMed  Google Scholar 

  55. 55.

    Spahn, G. et al. Near-infrared (NIR) spectroscopy. A new method for arthroscopic evaluation of low grade degenerated cartilage lesions. Results of a pilot study. BMC Musculoskelet. Disord. 8, 47 (2007).

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Burns, D. A. & Ciurczak, E. W. Handbook of Near-Infrared Spectroscopy (Marcel Dekker, 2008).

  57. 57.

    Cozzolino, D. et al. Effect of temperature variation on the visible and near infrared spectra of wine and the consequences on the partial least square calibrations developed to measure chemical composition. Anal. Chim. Acta 588, 224–230 (2007).

    CAS  PubMed  Google Scholar 

  58. 58.

    Wachs, I. E. & Keturakis, C. J. Monolayer systems. in Comprehensive Inorganic Chemistry II (Second Edition): From Elements to Applications 131–151 (Elsevier, 2013).

  59. 59.

    Bjørsvik, H.-R. & Martens, H. Data analysis: calibration of NIR instruments by PLS regression. in Handbook of Near-Infrared Analysis (eds. Burns, A. D. & Ciurczak, E. W.) 189–207 (Marcel Dekker, 2008).

  60. 60.

    Wu, S. & Butt, H. J. Near-infrared-sensitive materials based on upconverting nanoparticles. Adv. Mater. 28, 1208–1226 (2016).

    CAS  PubMed  Google Scholar 

  61. 61.

    Nippolainen, E. et al. Near infrared spectroscopy enables differentiation of mechanically and enzymatically induced cartilage injuries. Ann. Biomed. Eng. 48, 2343–2353 (2020).

  62. 62.

    Kilpatrick-Liverman, L., Kazmi, P., Wolff, E. & Polefka, T. G. The use of near-infrared spectroscopy in skin care applications. Skin Res. Technol. 12, 162–169 (2006).

  63. 63.

    Gu, Y., Chen, W. R., Xia, M., Jeong, S. W. & Liu, H. Effect of photothermal therapy on breast tumor vascular contents: noninvasive monitoring by near-infrared spectroscopy. Photochem. Photobiol. 81, 1002–1009 (2005).

    CAS  PubMed  Google Scholar 

  64. 64.

    Ali, J. H., Wang, W. B., Zevallos, M. & Alfano, R. R. Near infrared spectroscopy and imaging to probe differences in water content in normal and cancer human prostate tissues. Technol. Cancer Res. Treat. 3, 491–497 (2004).

    CAS  PubMed  Google Scholar 

  65. 65.

    Kasemsumran, S., Du, Y. P., Murayama, K., Huehne, M. & Ozaki, Y. Near-infrared spectroscopic determination of human serum albumin, γ-globulin, and glucose in a control serum solution with searching combination moving window partial least squares. Anal. Chim. Acta 512, 223 (2004).

    CAS  Google Scholar 

  66. 66.

    Samann, A. et al. Non-invasive blood glucose monitoring by means of near infrared spectroscopy: Investigation of long-term accuracy and stability. Exp. Clin. Endocrinol. Diabetes 108, 406–413 (2000).

    CAS  PubMed  Google Scholar 

  67. 67.

    Spahn, G., Felmet, G. & Hofmann, G. O. Traumatic and degenerative cartilage lesions: arthroscopic differentiation using near-infrared spectroscopy (NIRS). Arch. Orthop. Trauma Surg. 133, 997–1002 (2013).

    PubMed  Google Scholar 

  68. 68.

    García-Sánchez, F., Galvez-Sola, L., Martínez-Nicolás, J. J., Muelas-Domingo, R. & Nieves, M. Using near-infrared spectroscopy in agricultural systems. in Developments in Near-Infrared Spectroscopy, https://www.intechopen.com/books/developments-in-near-infrared-spectroscopy/using-near-infrared-spectroscopy-in-agricultural-systems (IntechOpen, 2017).

  69. 69.

    Jamrógiewicz, M. Application of the near-infrared spectroscopy in the pharmaceutical technology. J. Pharm. Biomed. Anal. 66, 1–10 (2012).

  70. 70.

    Linderholm, J., Geladi, P., Gorretta, N., Bendoula, R. & Gobrecht, A. Near infrared and hyperspectral studies of archaeological stratigraphy and statistical considerations. Geoarchaeology 34, 311–321 (2019).

    Google Scholar 

  71. 71.

    Thomas, D. B., McGoverin, C. M., Chinsamy, A. & Manley, M. Near infrared analysis of fossil bone from the Western Cape of South Africa. J. Near Infrared Spectrosc 19, 151–159 (2011).

    CAS  Google Scholar 

  72. 72.

    Türker-Kaya, S. & Huck, C. W. A review of mid-infrared and near-infrared imaging: principles, concepts and applications in plant tissue analysis. Molecules 22, 168 (2017).

    PubMed Central  Google Scholar 

  73. 73.

    Anand, S. et al. Effects of formalin fixation on tissue optical properties of in-vitro brain samples. in Optical Interactions with Tissue and Cells XXVI (SPIE, 2015).

  74. 74.

    Zhao, W. et al. Absorption spectroscopy of formaldehyde at 1.573 μm. J. Quant. Spectrosc. Radiat. Transf. 107, 331–339 (2007).

    CAS  Google Scholar 

  75. 75.

    Padalkar, M. V. & Pleshko, N. Wavelength-dependent penetration depth of near infrared radiation into cartilage. Analyst 140, 2093–2100 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    McGoverin, C. M., Lewis, K., Yang, X., Bostrom, M. P. G. & Pleshko, N. The contribution of bone and cartilage to the near-infrared spectrum of osteochondral tissue. Appl. Spectrosc. 68, 1168–1175 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Rajapakse, C. S., Padalkar, M. V., Yang, H. J., Ispiryan, M. & Pleshko, N. Non-destructive NIR spectral imaging assessment of bone water: comparison to MRI measurements. Bone 103, 116–124 (2017).

    PubMed  PubMed Central  Google Scholar 

  78. 78.

    Ailavajhala, R., Oswald, J., Rajapakse, C. S. & Pleshko, N. Environmentally-controlled near infrared spectroscopic imaging of bone water. Sci. Rep. 9, 10199 (2019).

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Loewen, E. G. & Popov, E. Diffraction Gratings and Applications (CRC Press, 2018).

  80. 80.

    Arthrospec ONE. http://www.arthrospec.de/.

  81. 81.

    Karchner, J. P., Querido, W., Kandel, S. & Pleshko, N. Spatial correlation of native and engineered cartilage components at micron resolution. Ann. NY Acad. Sci. 1442, 104–117 (2019).

    CAS  PubMed  Google Scholar 

  82. 82.

    Bhargava, R. Infrared spectroscopic imaging: the next generation. Appl. Spectrosc. 66, 1091–1120 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Lasch, P. & Naumann, D. Spatial resolution in infrared microspectroscopic imaging of tissues. Biochim. Biophys. Acta 1758, 814–829 (2006).

    CAS  PubMed  Google Scholar 

  84. 84.

    Savitzky, A. & Golay, M. J. E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639 (1964).

    CAS  Google Scholar 

  85. 85.

    Kohler, A., Zimonja, M., Segtnan, V. & Martens, H. Standard normal variate, multiplicative signal correction and extended multiplicative signal correction preprocessing in biospectroscopy. in Comprehensive Chemometrics 139–162 (Elsevier, 2010).

  86. 86.

    Geladi, P., MacDougall, D. & Martens, H. Linearization and scatter-correction for near-infrared reflectance spectra of meat. Appl. Spectrosc. 39, 491–500 (1985).

    Google Scholar 

  87. 87.

    Guo, Q., Wu, W. & Massart, D. L. The robust normal variate transform for pattern recognition with near-infrared data. Anal. Chim. Acta 382, 87–103 (1999).

    CAS  Google Scholar 

  88. 88.

    Li, Q., Gao, Q. & Zhang, G. Improved extended multiplicative scatter correction algorithm applied in blood glucose noninvasive measurement with FT-IR spectroscopy. J. Spectrosc. 2013, 916351 (2013).

  89. 89.

    Baykal, D. et al. Nondestructive assessment of engineered cartilage constructs using near-infrared spectroscopy. Appl. Spectrosc. 64, 1160–1166 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Hanifi, A., McCarthy, H., Roberts, S. & Pleshko, N. Fourier transform infrared imaging and infrared fiber optic probe spectroscopy identify collagen type in connective tissues. PLoS ONE 8, e64822 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Hanifi, A. et al. Infrared fiber optic probe evaluation of degenerative cartilage correlates with histological grading. Am. J. Sports Med. 40, 2853–2861 (2014).

    Google Scholar 

  92. 92.

    Liu, F. T., Ting, K. M. & Zhou, Z. H. Isolation-based anomaly detection. ACM Trans. Knowl. Discov. Data 6, 3 (2012).

    CAS  Google Scholar 

  93. 93.

    Workman, J. J. Jr. NIR spectroscopy calibration basics. in Handbook of Near-Infrared Analysis (eds. Burns, D. A. & Ciurczak, E. W.) 123–149 (Marcel Dekker, 2008).

  94. 94.

    Xiaobo, Z., Jiewen, Z., Povey, M. J. W., Holmes, M. & Hanpin, M. Variables selection methods in near-infrared spectroscopy. Anal. Chim. Acta 667, 14–32 (2010).

    PubMed  Google Scholar 

  95. 95.

    Afara, I. O. et al. Deep learning classification of cartilage integrity using near infrared spectroscopy. in Optics InfoBase Conference Papers, https://www.osapublishing.org/abstract.cfm?URI=Translational-2018-JTu3A.27 (2018).

  96. 96.

    Afara, I. O. et al. Machine learning classification of articular cartilage integrity using near infrared spectroscopy. Cell. Mol. Bioeng. 13, 219–228 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Diem, M., Romeo, M., Boydston-White, S., Miljković, M. & Matthäus, C. A decade of vibrational micro-spectroscopy of human cells and tissue (1994–2004). Analyst 129, 880–885 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Lasch, P., Haensch, W., Naumann, D. & Diem, M. Imaging of colorectal adenocarcinoma using FT-IR microspectroscopy and cluster analysis. Biochim. Biophys. Acta 1688, 176–186 (2004).

    CAS  PubMed  Google Scholar 

  99. 99.

    Kolmas, J., Marek, D. & Kolodziejski, W. Near-infrared (NIR) spectroscopy of synthetic hydroxyapatites and human dental tissues. Appl. Spectrosc. 69, 902–912 (2015).

    CAS  PubMed  Google Scholar 

  100. 100.

    Szarko, M., Muldrew, K. & Bertram, J. E. Freeze-thaw treatment effects on the dynamic mechanical properties of articular cartilage. BMC Musculoskelet. Disord. 11, 231 (2010).

    PubMed  PubMed Central  Google Scholar 

  101. 101.

    Loessner, D. et al. Functionalization, preparation and use of cell-laden gelatin methacryloyl-based hydrogels as modular tissue culture platforms. Nat. Protoc. 11, 727–746 (2016).

    CAS  PubMed  Google Scholar 

  102. 102.

    Torniainen, J. et al. Open-source Python module for automated preprocessing of near infrared spectroscopic data. Anal. Chim. Acta 1108, 1–9 (2020).

    CAS  PubMed  Google Scholar 

  103. 103.

    Kandel, S., Querido, W., Falcon, J. M., Reiners, D. J. & Pleshko, N. Approaches for in situ monitoring of matrix development in hydrogel-based engineered cartilage. Tissue Eng. Part C Methods 26, 225–238 (2020).

    CAS  PubMed  Google Scholar 

  104. 104.

    Viscarra Rossel, R. A. ParLeS: software for chemometric analysis of spectroscopic data. Chemom. Intell. Lab. Syst. 90, 72–83 (2008).

    CAS  Google Scholar 

  105. 105.

    Stevens, A., Ramirez-Lopez, L., Stevens, M. A. & Rcpp, L. Package ‘prospectr’. R Package (2020).

  106. 106.

    Li, H.-D., Xu, Q.-S. & Liang, Y.-Z. libPLS: an integrated library for partial least squares regression and linear discriminant analysis. Chemom. Intell. Lab. Syst. 176, 34–43 (2018).

    CAS  Google Scholar 

  107. 107.

    Hanson, B. A. ChemoSpec: an R package for the chemometric analysis of spectroscopic data. https://cran.r-project.org/web/packages/ChemoSpec/index.html (2014).

  108. 108.

    Beleites, C. & Sergo, V. hyperSpec: a package to handle hyperspectral data sets in R. https://cran.r-project.org/web/packages/hyperSpec/hyperSpec.pdf (2020).

  109. 109.

    Liland, K. H., Mevik, B. H. & Canteri, R. Baseline: baseline correction of spectra. https://cran.r-project.org/web/packages/baseline/baseline.pdf (2020).

  110. 110.

    Le Losq, C. Rampy: a Python library for processing spectroscopic (IR, Raman, XAS) data. https://zenodo.org/record/1168730#.X8uFwc6SlPY (2018).

  111. 111.

    Ramirez-Lopez, L. & Stevens, A. resemble: regression and similarity evaluation for memory-based learning in spectral chemometrics. https://www.r-project.org/nosvn/pandoc/resemble.html (2016).

  112. 112.

    Baumann P. Simplerspec: Beta Release 0.1.0 for Zenodo (2019).

  113. 113.

    Roudier, P. et al. spectacles: storing and manipulating spectroscopy data in R. https://cran.r-project.org/web/packages/spectacles/spectacles.pdf (2020).

  114. 114.

    Le Losq, C. Spectra. jl: a Julia package for processing spectroscopic data. https://zenodo.org/record/53940#.X8uG5M6SlPY (2016).

Download references

Acknowledgements

This work was financially supported by the Academy of Finland (315820), the European Union (Horizon 2020 Research and Innovation Programme, 780598), the SCITECO Doctoral Programme of the University of Eastern Finland, State Research Funding of Kuopio University Hospital (5203111) and the U.S. National Institutes of Health (R01 AR056145).

Author information

Affiliations

Authors

Contributions

I.O.A., R.S., W.Q., N.P. and J. Töyräs contributed to conceptualization, overall framing of the protocol and funding acquisition. I.O.A., E.N., W.Q., J. Torniainen, J.K.S., S.K. and N.P. contributed to data analysis, interpretation and figure preparation. I.O.A., R.S., E.N., W.Q., J. Torniainen, J.K.S. and S.K. wrote sections of the manuscript, and I.O.A. led the organization of the original manuscript draft. All authors contributed to and edited/revised the original draft and approved the final version.

Corresponding author

Correspondence to Isaac O. Afara.

Ethics declarations

Competing interests

The authors declare no competing interests as defined by Nature Research or other interests that might be perceived to influence the interpretation of the article.

Additional information

Peer review information Nature Protocols thanks Daniel Cozzolino, Ilias Tachtsidis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol:

Afara, I. O. et al. Sci. Rep. 7, 11463 (2017): https://doi.org/10.1038/s41598-017-11844-3

Ala-Myllymäki, J. et al. Ann. Biomed. Eng. 2020, https://doi.org/10.1007/s10439-020-02578-x

Rajapakse, C. S. et al. Bone 103, 116–124 (2017): https://doi.org/10.1016/j.bone.2017.06.015

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2.

Supplementary Data

Hyperspectral imaging file containing data for Supplementary Fig. 1.

Source data

Source Data Fig. 7

NIR-mapped proteoglycan content of bovine patella (zipped file contains a .mat file).

Source Data Fig. 8

Raw data file for spectra of tissue-engineered cartilage.

Source Data Fig. 9

Hyperspectral NIR imaging file containing data for Fig. 9 (zipped file contains an .fsm file).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Afara, I.O., Shaikh, R., Nippolainen, E. et al. Characterization of connective tissues using near-infrared spectroscopy and imaging. Nat Protoc 16, 1297–1329 (2021). https://doi.org/10.1038/s41596-020-00468-z

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing