Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Comparative analysis of assays to measure CAR T-cell-mediated cytotoxicity

Abstract

The antitumor efficacy of genetically engineered ‘living drugs’, including chimeric antigen receptor and T-cell receptor T cells, is influenced by their activation, proliferation, inhibition, and exhaustion. A sensitive and reproducible cytotoxicity assay that collectively reflects these functions is an essential requirement for translation of these cellular therapeutic agents. Here, we compare various in vitro cytotoxicity assays (including chromium release, bioluminescence, impedance, and flow cytometry) with respect to their experimental setup, appropriate uses, advantages, and disadvantages, and measures to overcome their limitations. We also highlight the US Food and Drug Administration (FDA) directives for a potency assay for release of clinical cell therapy products. In addition, we discuss advanced assays of repeated antigen exposure and simultaneous testing of combinations of immune effector cells, immunomodulatory antibodies, and targets with variable antigen expression. This review article should help to equip investigators with the necessary knowledge to select appropriate cytotoxicity assays to test the efficacy of immunotherapeutic agents alone or in combination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Interassay comparison of cell-mediated cytotoxicity assessment.

Similar content being viewed by others

References

  1. Darvin, P., Toor, S. M., Sasidharan Nair, V. & Elkord, E. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp. Mol. Med. 50, 1–11 (2018).

    PubMed  Google Scholar 

  2. Slaney, C. Y., Wang, P., Darcy, P. K. & Kershaw, M. H. CARs versus BiTEs: a comparison between T cell-redirection strategies for cancer treatment. Cancer Discov. 8, 924–934 (2018).

    CAS  PubMed  Google Scholar 

  3. Bommareddy, P. K., Shettigar, M. & Kaufman, H. L. Integrating oncolytic viruses in combination cancer immunotherapy. Nat. Rev. Immunol. 18, 498–513 (2018).

    CAS  PubMed  Google Scholar 

  4. Grosser, R., Cherkassky, L., Chintala, N. & Adusumilli, P. S. Combination immunotherapy with CAR T cells and checkpoint blockade for the treatment of solid tumors. Cancer Cell 36, 471–482 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Klichinsky, M. et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat. Biotechnol. 38, 947–953 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kiesgen, S., Chicaybam, L., Chintala, N. K. & Adusumilli, P. S. Chimeric antigen receptor (CAR) T-cell therapy for thoracic malignancies. J. Thorac. Oncol. 13, 16–26 (2018).

    CAS  PubMed  Google Scholar 

  8. Eyquem, J. et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543, 113–117 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Stadtmauer, E. A. et al. CRISPR-engineered T cells in patients with refractory cancer. Science 367, eaba7365 (2020).

    CAS  PubMed  Google Scholar 

  10. Brunner, K. T., Mauel, J., Cerottini, J. C. & Chapuis, B. Quantitative assay of the lytic action of immune lymphoid cells on 51-Cr-labelled allogeneic target cells in vitro; inhibition by isoantibody and by drugs. Immunology 14, 181–196 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Smith, E. L. et al. GPRC5D is a target for the immunotherapy of multiple myeloma with rationally designed CAR T cells. Sci. Transl. Med. 11, eaau7746 (2019).

    PubMed  PubMed Central  Google Scholar 

  12. Daher, M. & Rezvani, K. Next generation natural killer cells for cancer immunotherapy: the promise of genetic engineering. Curr. Opin. Immunol. 51, 146–153 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Whiteside, T. L. Measurement of cytotoxic activity of NK/LAK cells. Curr. Protoc. Immunol. Chapter 7, Unit 7 18 (2001).

  14. Adusumilli, P. S. et al. Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Sci. Transl. Med. 6, 261ra151 (2014).

    PubMed  PubMed Central  Google Scholar 

  15. Peper, J. K. et al. An impedance-based cytotoxicity assay for real-time and label-free assessment of T-cell-mediated killing of adherent cells. J. Immunol. Methods 405, 192–198 (2014).

    CAS  PubMed  Google Scholar 

  16. Karimi, M. A. et al. Measuring cytotoxicity by bioluminescence imaging outperforms the standard chromium-51 release assay. PLoS ONE 9, e89357 (2014).

    PubMed  PubMed Central  Google Scholar 

  17. Borella, P., Bargellini, A., Salvioli, S., Medici, C. I. & Cossarizza, A. The use of non-radioactive chromium as an alternative to 51Cr in NK assay. J. Immunol. Methods 186, 101–110 (1995).

    CAS  PubMed  Google Scholar 

  18. Schafer, H., Schafer, A., Kiderlen, A. F., Masihi, K. N. & Burger, R. A highly sensitive cytotoxicity assay based on the release of reporter enzymes, from stably transfected cell lines. J. Immunol. Methods 204, 89–98 (1997).

    CAS  PubMed  Google Scholar 

  19. Thorne, N., Inglese, J. & Auld, D. S. Illuminating insights into firefly luciferase and other bioluminescent reporters used in chemical biology. Chem. Biol. 17, 646–657 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Fu, X. et al. A simple and sensitive method for measuring tumor-specific T cell cytotoxicity. PLoS ONE 5, e11867 (2010).

    PubMed  PubMed Central  Google Scholar 

  21. Rossignol, A., Bonnaudet, V., Clemenceau, B., Vie, H. & Bretaudeau, L. A high-performance, non-radioactive potency assay for measuring cytotoxicity: A full substitute of the chromium-release assay targeting the regulatory-compliance objective. mAbs 9, 521–535 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hayek, S. et al. Identification of primary natural killer cell modulators by chemical library screening with a luciferase-based functional assay. SLAS Discov. 24, 25–37 (2019).

    CAS  PubMed  Google Scholar 

  23. Matta, H. et al. Development and characterization of a novel luciferase based cytotoxicity assay. Sci. Rep. 8, 199 (2018).

    PubMed  PubMed Central  Google Scholar 

  24. Brown, C. E. et al. Biophotonic cytotoxicity assay for high-throughput screening of cytolytic killing. J. Immunol. Methods 297, 39–52 (2005).

    CAS  PubMed  Google Scholar 

  25. Omokoko, T. A. et al. Luciferase mRNA transfection of antigen presenting cells permits sensitive nonradioactive measurement of cellular and humoral cytotoxicity. J. Immunol. Res. 2016, 9540975 (2016).

    PubMed  PubMed Central  Google Scholar 

  26. Abassi, Y. A. et al. Label-free, real-time monitoring of IgE-mediated mast cell activation on microelectronic cell sensor arrays. J. Immunol. Methods 292, 195–205 (2004).

    CAS  PubMed  Google Scholar 

  27. Zhu, J., Wang, X., Xu, X. & Abassi, Y. A. Dynamic and label-free monitoring of natural killer cell cytotoxic activity using electronic cell sensor arrays. J. Immunol. Methods 309, 25–33 (2006).

    CAS  PubMed  Google Scholar 

  28. Xi, B. et al. A real-time potency assay for chimeric antigen receptor T cells targeting solid and hematological cancer cells. J. Vis. Exp. 153 (2019).

  29. Kho, D. et al. Application of xCELLigence RTCA biosensor technology for revealing the profile and window of drug responsiveness in real time. Biosensors 5, 199–222 (2015).

    PubMed  PubMed Central  Google Scholar 

  30. Davenport, A. J. et al. CAR-T cells inflict sequential killing of multiple tumor target cells. Cancer Immunol. Res. 3, 483–494 (2015).

    CAS  PubMed  Google Scholar 

  31. Martinez-Serra, J. et al. xCELLigence system for real-time label-free monitoring of growth and viability of cell lines from hematological malignancies. OncoTargets Ther. 7, 985–994 (2014).

    Google Scholar 

  32. Cerignoli, F. et al. In vitro immunotherapy potency assays using real-time cell analysis. PLoS ONE 13, e0193498 (2018).

    PubMed  PubMed Central  Google Scholar 

  33. Hillger, J. M., Lieuw, W. L., Heitman, L. H. & AP, I. J. Label-free technology and patient cells: from early drug development to precision medicine. Drug. Discov. Today 22, 1808–1815 (2017).

    CAS  PubMed  Google Scholar 

  34. Erskine, C. L., Henle, A. M. & Knutson, K. L. Determining optimal cytotoxic activity of human Her2neu specific CD8 T cells by comparing the Cr51 release assay to the xCELLigence system. J. Vis. Exp. 66, e3683 (2012).

    Google Scholar 

  35. Jedema, I., van der Werff, N. M., Barge, R. M., Willemze, R. & Falkenburg, J. H. New CFSE-based assay to determine susceptibility to lysis by cytotoxic T cells of leukemic precursor cells within a heterogeneous target cell population. Blood 103, 2677–2682 (2004).

    CAS  PubMed  Google Scholar 

  36. Riccardi, C. & Nicoletti, I. Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat. Protoc. 1, 1458–1461 (2006).

    CAS  PubMed  Google Scholar 

  37. Aubry, J. P. et al. Annexin V used for measuring apoptosis in the early events of cellular cytotoxicity. Cytometry 37, 197–204 (1999).

    CAS  PubMed  Google Scholar 

  38. Logue, S. E., Elgendy, M. & Martin, S. J. Expression, purification and use of recombinant annexin V for the detection of apoptotic cells. Nat. Protoc. 4, 1383–1395 (2009).

    CAS  PubMed  Google Scholar 

  39. Jin, Q. et al. Rapid flow cytometry-based assay for the evaluation of gammadelta T cell-mediated cytotoxicity. Mol. Med. Rep. 17, 3555–3562 (2018).

    CAS  PubMed  Google Scholar 

  40. Ozdemir, O., Ravindranath, Y. & Savasan, S. Cell-mediated cytotoxicity evaluation using monoclonal antibody staining for target or effector cells with annexinV/propidium iodide colabeling by fluorosphere-adjusted counts on three-color flow cytometry. Cytometry A 56, 53–60 (2003).

    PubMed  Google Scholar 

  41. Goldberg, J. E., Sherwood, S. W. & Clayberger, C. A novel method for measuring CTL and NK cell-mediated cytotoxicity using annexin V and two-color flow cytometry. J. Immunol. Methods 224, 1–9 (1999).

    CAS  PubMed  Google Scholar 

  42. Liu, L. et al. Visualization and quantification of T cell-mediated cytotoxicity using cell-permeable fluorogenic caspase substrates. Nat. Med. 8, 185–189 (2002).

    CAS  PubMed  Google Scholar 

  43. Packard, B. Z. & Komoriya, A. Intracellular protease activation in apoptosis and cell-mediated cytotoxicity characterized by cell-permeable fluorogenic protease substrates. Cell Res. 18, 238–247 (2008).

    CAS  PubMed  Google Scholar 

  44. Motzer, S. A., Tsuji, J., Hertig, V., Johnston, S. K. & Scanlan, J. Natural killer cell cytotoxicity: a methods analysis of 51chromium release versus flow cytometry. Biol. Res. Nurs. 5, 142–152 (2003).

    PubMed  Google Scholar 

  45. Joslin, J. et al. A fully automated high-throughput flow cytometry screening system enabling phenotypic drug discovery. SLAS Discov. 23, 697–707 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Spitzer, M. H. & Nolan, G. P. Mass cytometry: single cells, many features. Cell 165, 780–791 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Brummelman, J. et al. Development, application and computational analysis of high-dimensional fluorescent antibody panels for single-cell flow cytometry. Nat. Protoc. 14, 1946–1969 (2019).

    CAS  PubMed  Google Scholar 

  48. Martinez, E. M. et al. High-throughput flow cytometric method for the simultaneous measurement of CAR-T cell characterization and cytotoxicity against solid tumor cell lines. SLAS Discov. 23, 603–612 (2018).

    CAS  PubMed  Google Scholar 

  49. Lichtenfels, R., Biddison, W. E., Schulz, H., Vogt, A. B. & Martin, R. CARE-LASS (calcein-release-assay), an improved fluorescence-based test system to measure cytotoxic T lymphocyte activity. J. Immunol. Methods 172, 227–239 (1994).

    CAS  PubMed  Google Scholar 

  50. Neri, S., Mariani, E., Meneghetti, A., Cattini, L. & Facchini, A. Calcein-acetyoxymethyl cytotoxicity assay: standardization of a method allowing additional analyses on recovered effector cells and supernatants. Clin. Diagn. Lab. Immunol. 8, 1131–1135 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gillissen, M. A. et al. The modified FACS calcein AM retention assay: A high throughput flow cytometer based method to measure cytotoxicity. J. Immunol. Methods 434, 16–23 (2016).

    CAS  PubMed  Google Scholar 

  52. Fassy, J., Tsalkitzi, K., Salavagione, E., Hamouda-Tekaya, N. & Braud, V. M. A real-time digital bio-imaging system to quantify cellular cytotoxicity as an alternative to the standard chromium-51 release assay. Immunology 150, 489–494 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. von Zons, P. et al. Comparison of europium and chromium release assays: cytotoxicity in healthy individuals and patients with cervical carcinoma. Clin. Diagn. Lab. Immunol. 4, 202–207 (1997).

    Google Scholar 

  54. Decker, T. & Lohmann-Matthes, M. L. A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J. Immunol. Methods 115, 61–69 (1988).

    CAS  PubMed  Google Scholar 

  55. Janetzki, S. et al. Guidelines for the automated evaluation of Elispot assays. Nat. Protoc. 10, 1098–1115 (2015).

    CAS  PubMed  Google Scholar 

  56. Streeck, H., Frahm, N. & Walker, B. D. The role of IFN-gamma Elispot assay in HIV vaccine research. Nat. Protoc. 4, 461–469 (2009).

    CAS  PubMed  Google Scholar 

  57. Shafer-Weaver, K. et al. The granzyme B ELISPOT assay: an alternative to the 51Cr-release assay for monitoring cell-mediated cytotoxicity. J. Transl. Med. 1, 14 (2003).

    PubMed  PubMed Central  Google Scholar 

  58. Malyguine, A. M., Strobl, S., Dunham, K., Shurin, M. R. & Sayers, T. J. ELISPOT assay for monitoring cytotoxic T lymphocytes (CTL) activity in cancer vaccine clinical trials. Cells 1, 111–126 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Aktas, E., Kucuksezer, U. C., Bilgic, S., Erten, G. & Deniz, G. Relationship between CD107a expression and cytotoxic activity. Cell. Immunol. 254, 149–154 (2009).

    CAS  PubMed  Google Scholar 

  60. Alter, G., Malenfant, J. M. & Altfeld, M. CD107a as a functional marker for the identification of natural killer cell activity. J. Immunol. Methods 294, 15–22 (2004).

    CAS  PubMed  Google Scholar 

  61. Cherkassky, L. et al. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J. Clin. Invest. 126, 3130–3144 (2016).

    PubMed  PubMed Central  Google Scholar 

  62. Morello, A., Sadelain, M. & Adusumilli, P. S. Mesothelin-targeted CARs: driving T cells to solid tumors. Cancer Discov. 6, 133–146 (2016).

    CAS  PubMed  Google Scholar 

  63. Chen, N., Li, X., Chintala, N. K., Tano, Z. E. & Adusumilli, P. S. Driving CARs on the uneven road of antigen heterogeneity in solid tumors. Curr. Opin. Immunol. 51, 103–110 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Guha, P., Reha, J. & Katz, S. C. Immunosuppression in liver tumors: opening the portal to effective immunotherapy. Cancer Gene Ther. 24, 114–120 (2017).

    CAS  PubMed  Google Scholar 

  65. Tano, Z. et al. MA06. 06 An ex-vivo patient-derived, immunocompetent (PDI) culture system to evaluate immunotherapeutic agents’ anti-tumor efficacy. J. Thorac. Oncol. 13, S376 (2018).

    Google Scholar 

  66. US Food and Drug Administration. Chemistry, Manufacturing, and Control (CMC) Information for Human Gene Therapy Investigational New Drug Applications (INDs): Guidance for Industry. https://www.fda.gov/media/113760/download. Accessed 18 September 2020.

  67. US Food and Drug Administration. Guidance for FDA Reviewers and Sponsors: Content and Review of Chemistry, Manufacturing, and Control (CMC) Information for Human Somatic Cell Therapy Investigational New Drug Applications (INDs). 2008. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/content-and-review-chemistry-manufacturing-and-control-cmc-information-human-somatic-cell-therapy. Accessed 18 September 2020.

  68. US Food and Drug Administration. Guidance for Industry: Potency Tests for Cellular and Gene Therapy Products. 2011. https://www.fda.gov/media/79856/download. Accessed 18 September 2020.

  69. de Wolf, C., van de Bovenkamp, M. & Hoefnagel, M. Regulatory perspective on in vitro potency assays for human T cells used in anti-tumor immunotherapy. Cytotherapy 20, 601–622 (2018).

    PubMed  Google Scholar 

  70. Kassim, S. Toward an integrated model of product characterization for CAR-T cell therapy drug development efforts. Cell Gene Ther. Insight 3, 227–237 (2017).

    Google Scholar 

  71. Castella, M. et al. Point-of-care CAR T-cell production (ARI-0001) using a closed semi-automatic bioreactor: experience from an academic phase I clinical trial. Front. Immunol. 11, 482 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Jackson, Z. et al. Automated manufacture of autologous CD19 CAR-T cells for treatment of non-Hodgkin lymphoma. Front. Immunol. 11, 1941 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. US Food and Drug Administration. Summary Basis for Regulatory Action. BLA 125643. YESCARTA. 2017. https://www.fda.gov/media/108788/download. Accessed 18 September 2020.

  74. US Food and Drug Administration. FDA Briefing Document: Oncologic Drugs Advisory Committee Meeting. BLA 125646: Tisagenlecleucel, Novartis Pharmaceuticals Corporation. https://www.fda.gov/media/106081/download. Accessed 18 September 2020.

  75. Tyagarajan, S., Spencer, T. & Smith, J. Optimizing CAR-T cell manufacturing processes during pivotal clinical trials. Mol. Ther. Methods Clin. Dev. 16, 136–144 (2020).

    CAS  PubMed  Google Scholar 

  76. Rafiq, S. et al. Optimized T-cell receptor-mimic chimeric antigen receptor T cells directed toward the intracellular Wilms tumor 1 antigen. Leukemia 31, 1788–1797 (2017).

    CAS  PubMed  Google Scholar 

  77. Quah, B. J. & Parish, C. R. The use of carboxyfluorescein diacetate succinimidyl ester (CFSE) to monitor lymphocyte proliferation. J. Vis. Exp. 44, 2259 (2010).

    Google Scholar 

  78. Feucht, J. et al. Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nat. Med. 25, 82–88 (2019).

    CAS  PubMed  Google Scholar 

  79. Eerola, A. K., Soini, Y. & Paakko, P. A high number of tumor-infiltrating lymphocytes are associated with a small tumor size, low tumor stage, and a favorable prognosis in operated small cell lung carcinoma. Clin. Cancer Res. 6, 1875–1881 (2000).

    CAS  PubMed  Google Scholar 

  80. Steele, K. E. et al. Measuring multiple parameters of CD8+ tumor-infiltrating lymphocytes in human cancers by image analysis. J. Immunother. Cancer 6, 20 (2018).

    PubMed  PubMed Central  Google Scholar 

  81. Hillerdal, V., Nilsson, B., Carlsson, B., Eriksson, F. & Essand, M. T cells engineered with a T cell receptor against the prostate antigen TARP specifically kill HLA-A2+ prostate and breast cancer cells. Proc. Natl Acad. Sci. USA 109, 15877–15881 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Tseng, C. T. & Klimpel, G. R. Binding of the hepatitis C virus envelope protein E2 to CD81 inhibits natural killer cell functions. J. Exp. Med. 195, 43–49 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Bhat, R., Dempe, S., Dinsart, C. & Rommelaere, J. Enhancement of NK cell antitumor responses using an oncolytic parvovirus. Int. J. Cancer 128, 908–919 (2011).

    CAS  PubMed  Google Scholar 

  84. Oberg, H. H. et al. Novel bispecific antibodies increase gammadelta T-cell cytotoxicity against pancreatic cancer cells. Cancer Res. 74, 1349–1360 (2014).

    CAS  PubMed  Google Scholar 

  85. Clemenceau, B. et al. Antibody-dependent cellular cytotoxicity (ADCC) is mediated by genetically modified antigen-specific human T lymphocytes. Blood 107, 4669–4677 (2006).

    CAS  PubMed  Google Scholar 

  86. Kurai, J. et al. Antibody-dependent cellular cytotoxicity mediated by cetuximab against lung cancer cell lines. Clin. Cancer Res. 13, 1552–1561 (2007).

    CAS  PubMed  Google Scholar 

  87. Joshi, T. et al. The PtdIns 3-kinase/Akt pathway regulates macrophage-mediated ADCC against B cell lymphoma. PLoS ONE 4, e4208 (2009).

    PubMed  PubMed Central  Google Scholar 

  88. Rigo, V. et al. Combined immunotherapy with anti-PDL-1/PD-1 and anti-CD4 antibodies cures syngeneic disseminated neuroblastoma. Sci. Rep. 7, 14049 (2017).

    PubMed  PubMed Central  Google Scholar 

  89. Liu, C. et al. Expansion of spleen myeloid suppressor cells represses NK cell cytotoxicity in tumor-bearing host. Blood 109, 4336–4342 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Chen, X. et al. A combinational therapy of EGFR-CAR NK cells and oncolytic herpes simplex virus 1 for breast cancer brain metastases. Oncotarget 7, 27764–27777 (2016).

    PubMed  PubMed Central  Google Scholar 

  91. Nazarian, A. A. et al. Characterization of bispecific T-cell engager (BiTE) antibodies with a high-capacity T-cell dependent cellular cytotoxicity (TDCC) assay. J. Biomol. Screen. 20, 519–527 (2015).

    CAS  PubMed  Google Scholar 

  92. Martin-Manso, G. et al. Thrombospondin 1 promotes tumor macrophage recruitment and enhances tumor cell cytotoxicity of differentiated U937 cells. Cancer Res. 68, 7090–7099 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Cook, K. L. et al. Hydroxychloroquine inhibits autophagy to potentiate antiestrogen responsiveness in ER+ breast cancer. Clin. Cancer Res. 20, 3222–3232 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. El-Andaloussi, N. et al. Generation of an adenovirus–parvovirus chimera with enhanced oncolytic potential. J. Virol. 86, 10418–10431 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Fajardo, C. A. et al. Oncolytic adenoviral delivery of an EGFR-targeting T-cell engager improves antitumor efficacy. Cancer Res. 77, 2052–2063 (2017).

    CAS  PubMed  Google Scholar 

  96. Kute, T. E. et al. Breast tumor cells isolated from in vitro resistance to trastuzumab remain sensitive to trastuzumab anti-tumor effects in vivo and to ADCC killing. Cancer Immunol. Immunother. 58, 1887–1896 (2009).

    CAS  PubMed  Google Scholar 

  97. Hermans, I. F. et al. The VITAL assay: a versatile fluorometric technique for assessing CTL- and NKT-mediated cytotoxicity against multiple targets in vitro and in vivo. J. Immunol. Methods 285, 25–40 (2004).

    CAS  PubMed  Google Scholar 

  98. Yang, Z. Z., Novak, A. J., Ziesmer, S. C., Witzig, T. E. & Ansell, S. M. Attenuation of CD8(+) T-cell function by CD4(+)CD25(+) regulatory T cells in B-cell non-Hodgkin’s lymphoma. Cancer Res. 66, 10145–10152 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Kasatori, N., Ishikawa, F., Ueyama, M. & Urayama, T. A differential assay of NK-cell-mediated cytotoxicity in K562 cells revealing three sequential membrane impairment steps using three-color flow-cytometry. J. Immunol. Methods 307, 41–53 (2005).

    CAS  PubMed  Google Scholar 

  100. Hoppner, M., Luhm, J., Schlenke, P., Koritke, P. & Frohn, C. A flow-cytometry based cytotoxicity assay using stained effector cells in combination with native target cells. J. Immunol. Methods 267, 157–163 (2002).

    CAS  PubMed  Google Scholar 

  101. Bracher, M., Gould, H. J., Sutton, B. J., Dombrowicz, D. & Karagiannis, S. N. Three-colour flow cytometric method to measure antibody-dependent tumour cell killing by cytotoxicity and phagocytosis. J. Immunol. Methods 323, 160–171 (2007).

    CAS  PubMed  Google Scholar 

  102. Oberst, M. D. et al. CEA/CD3 bispecific antibody MEDI-565/AMG 211 activation of T cells and subsequent killing of human tumors is independent of mutations commonly found in colorectal adenocarcinomas. mAbs 6, 1571–1584 (2014).

    PubMed  PubMed Central  Google Scholar 

  103. Yamashita, M. et al. A novel method for evaluating antibody-dependent cell-mediated cytotoxicity by flowcytometry using cryopreserved human peripheral blood mononuclear cells. Sci. Rep. 6, 19772 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

P.S.A.’s laboratory work is supported by grants from the National Institutes of Health (P30 CA008748, R01 CA236615-01, and R01 CA235667), the US Department of Defense (BC132124, LC160212, CA170630, and CA180889), the Batishwa Fellowship, the Comedy vs Cancer Award, the Dalle Pezze Foundation, the Derfner Foundation, the Esophageal Cancer Education Fund, the Geoffrey Beene Foundation, the Memorial Sloan Kettering Technology Development Fund, the Miner Fund for Mesothelioma Research, the Mr. William H. Goodwin and Alice Goodwin, the Commonwealth Foundation for Cancer Research, and the Experimental Therapeutics Center of Memorial Sloan Kettering Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasad S. Adusumilli.

Ethics declarations

Competing interests

P.S.A. has received research funding from ATARA Biotherapeutics and Acea Biosciences, has served on the Scientific Advisory Board or as consultant to ATARA Biotherapeutics, Bayer, Carisma Therapeutics, Imugene, and Takeda Therapeutics, and has patents, royalties, and intellectual property on mesothelin-targeted CARs and other T-cell therapies, and method for detection of cancer cells using virus, and pending patent applications on T-cell therapies.

Additional information

Peer review information Nature Protocols thanks Marcela Maus and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiesgen, S., Messinger, J.C., Chintala, N.K. et al. Comparative analysis of assays to measure CAR T-cell-mediated cytotoxicity. Nat Protoc 16, 1331–1342 (2021). https://doi.org/10.1038/s41596-020-00467-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-020-00467-0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing