Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synthesis of N-heterocyclic carbene gold(I) complexes

Abstract

N-heterocyclic carbene gold(I) chloride and hydroxide complexes are regularly used as synthons to access various oxygen-, nitrogen- or carbon-bound gold complexes. They are also widely employed as efficient catalysts in addition reactions of hydroelements to unsaturated bonds and in several rearrangement and decarboxylation protocols. Here we describe the multigram synthesis of the most common mononuclear N-heterocyclic carbene gold(I) chloride complexes bearing the N,N′-bis-(2,4,6-trimethylphenyl)imidazol-2-ylidene (IMes), N,N′-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr) and N,N′-bis(2,6-bis(diphenylmethyl)-4-methylphenyl)imidazol-2-ylidene (IPr*) ligands. Their synthesis is achieved through the straightforward and practical weak base approach in a total time of 4–5 h. This straightforward methodology is conducted under air and possesses considerable advantages over alternative routes, such as the use of a sustainable reaction solvent, minimal amounts of a mild base and commercially available or easily obtained starting materials. Additionally, we describe the synthesis of the mononuclear gold(I) hydroxide complex bearing the IPr ligand, using the state-of-the-art method requiring 24 h. Finally, the improved synthesis of the dinuclear gold(I) hydroxide complex [{Au(IPr)}2(μ-OH)][BF4] is described (~3 h). All procedures can be performed by researchers with standard training and lead to high yields (76–99%) of microanalytically pure bench-stable materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Synthetic routes toward [AuCl(NHC)] complexes.
Fig. 2: Large-scale synthesis of [AuCl(NHC)] complexes.
Fig. 3: Synthesis of [Au(OH)(NHC)] complexes.
Fig. 4
Fig. 5

Data availability

The authors confirm that the data supporting the findings of this study are available within the article, its Supplementary Information and its Source Data files, as well as the primary supporting research papers.

References

  1. 1.

    Hashmi, A. S. K. The catalysis gold rush: new claims. Angew. Chem. Int. Ed 44, 6990–6993 (2005).

    CAS  Google Scholar 

  2. 2.

    Hashmi, A. S. K. Gold-catalyzed organic reactions. Chem. Rev. 107, 3180–3211 (2007).

    CAS  PubMed  Google Scholar 

  3. 3.

    Gorin, D. & Toste, F. D. Relativistic effects in homogeneous gold catalysis. Nature 446, 395–403 (2007).

    CAS  PubMed  Google Scholar 

  4. 4.

    Li, Z., Brouwer, C. & He, C. Gold-catalyzed organic transformations. Chem. Rev. 108, 3239–3265 (2008).

    CAS  PubMed  Google Scholar 

  5. 5.

    Arcadi, A. Alternative synthetic methods through new developments in catalysis by gold. Chem. Rev. 108, 3266–3325 (2008).

    CAS  PubMed  Google Scholar 

  6. 6.

    Joost, M., Amgoune, A. & Bourissou, D. Reactivity of gold complexes towards elementary organometallic reactions. Angew. Chem. Int. Ed. 54, 15022–15045 (2015).

    CAS  Google Scholar 

  7. 7.

    Ciriminna, R., Falletta, E., Della Pina, C., Teles, J. H. & Pagliaro, M. Industrial applications of gold catalysis. Angew. Chem. Int. Ed. 55, 14210–14217 (2016).

    CAS  Google Scholar 

  8. 8.

    Schmidbaur, H. & Schier, A. Aurophilic interactions as a subject of current research: an update. Chem. Soc. Rev. 41, 370–412 (2012).

    CAS  PubMed  Google Scholar 

  9. 9.

    Smith, C. A. et al. N-Heterocyclic carbenes in materials chemistry. Chem. Rev. 119, 4986–5056 (2019).

    CAS  PubMed  Google Scholar 

  10. 10.

    Pujadas, M. & Rodríguez, L. Luminescent phosphine gold(I) alkynyl complexes. Highlights from 2010 to 2018. Coord. Chem. Rev. 408, 213179 (2020).

    CAS  Google Scholar 

  11. 11.

    Dominelli, B., Correia, J. D. G. & Kühn, F. E. Medicinal applications of gold(I/III)-based complexes bearing N-heterocyclic carbene and phosphine ligands. J. Organomet. Chem. 866, 153–164 (2018).

    CAS  Google Scholar 

  12. 12.

    Qian, D. & Zhang, J. Gold-catalyzed cyclopropanation reactions using a carbenoid precursor toolbox. Chem. Soc. Rev. 44, 677–698 (2015).

    CAS  PubMed  Google Scholar 

  13. 13.

    Praveen, C. Carbophilic activation of π-systems via gold coordination: towards regioselective access of intermolecular addition products. Coord. Chem. Rev. 392, 1–34 (2019).

    CAS  Google Scholar 

  14. 14.

    Nijamudheen, A. & Datta, A. Gold‐catalyzed cross‐coupling reactions: an overview of design strategies, mechanistic studies, and applications. Chem. Eur. J. 26, 1442–1487 (2019).

    PubMed  Google Scholar 

  15. 15.

    Marion, N. & Nolan, S. P. N-Heterocyclic carbenes in gold catalysis. Chem. Soc. Rev. 37, 1776–1782 (2008).

    CAS  PubMed  Google Scholar 

  16. 16.

    Nolan, S. P. The development and catalytic uses of N-heterocyclic carbene gold complexes. Acc. Chem. Res. 44, 91–100 (2010).

    PubMed  Google Scholar 

  17. 17.

    Gaillard, S., Cazin, C. S. J. & Nolan, S. P. N-Heterocyclic carbene gold(I) and copper(I) complexes in C–H bond activation. Acc. Chem. Res. 45, 778–787 (2011).

    PubMed  Google Scholar 

  18. 18.

    Xu, Y., Hu, X., Zhang, S., Xi, X. & Wu, Y. Room-temperature hydration of alkynes catalyzed by different carbene gold complexes and their precursors. ChemCatChem 8, 262–267 (2016).

    CAS  Google Scholar 

  19. 19.

    Trinchillo, M. et al. Extensive experimental and computational study of counterion effect in the reaction mechanism of NHC–gold(I)-catalyzed alkoxylation of alkynes. Organometallics 35, 641–654 (2016).

    CAS  Google Scholar 

  20. 20.

    Sarmiento, J. T., Suárez-Pantiga, S., Olmos, A., Varea, T. & Asensio, G. Silica-immobilized NHC–gold(I) complexes: versatile catalysts for the functionalization of alkynes under batch and continuous flow conditions. ACS Catal. 7, 7146–7155 (2017).

    CAS  Google Scholar 

  21. 21.

    Mora, M., Gimeno, M. C. & Visbal, R. Recent advances in gold–NHC complexes with biological properties. Chem. Soc. Rev. 48, 447–462 (2019).

    CAS  PubMed  Google Scholar 

  22. 22.

    Sak, H., Mawick, M. & Krause, N. Sustainable gold catalysis in water using cyclodextrin‐tagged NHC–gold complexes. ChemCatChem 11, 5821–5829 (2019).

    CAS  Google Scholar 

  23. 23.

    Tugny, C. et al. β-Cyclodextrin–NHC–gold(I) complex (β-ICyD)AuCl: a chiral nanoreactor for enantioselective and substrate-selective alkoxycyclization reactions. ACS Catal. 10, 5964–5972 (2020).

    CAS  Google Scholar 

  24. 24.

    Michalak, M. & Kośnik, W. Chiral N-heterocyclic carbene gold complexes: synthesis and applications in catalysis. Catalysts 9, 890 (2019).

    CAS  Google Scholar 

  25. 25.

    Tang, X.-T. et al. Recent progress in N-heterocyclic carbene gold-catalyzed reactions of alkynes involving oxidation/amination/cycloaddition. Catalysts 10, 350 (2020).

    CAS  Google Scholar 

  26. 26.

    Wang, W., Hammond, G. B. & Xu, B. Ligand effects and ligand design in homogeneous gold(I) catalysis. J. Am. Chem. Soc. 134, 5697–5705 (2012).

    CAS  PubMed  Google Scholar 

  27. 27.

    Gatineau, D., Goddard, J., Mouriès-Mansuy, V. & Fensterbank, L. When NHC ligands make a difference in gold catalysis. Isr. J. Chem. 53, 892–900 (2013).

    CAS  Google Scholar 

  28. 28.

    Ranieri, B., Escofet, I. & Echavarren, A. M. Anatomy of gold catalysts: facts and myths. Org. Biomol. Chem. 13, 7103–7118 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    de Frémont, P., Scott, N. M., Stevens, E. D. & Nolan, S. P. Synthesis and structural characterization of N-heterocyclic carbene gold(I) complexes. Organometallics 24, 2411–2418 (2005).

    Google Scholar 

  30. 30.

    Díez-González, S., Marion, N. & Nolan, S. P. N-Heterocyclic carbenes in late transition metal catalysis. Chem. Rev. 109, 3612–3676 (2009).

    PubMed  Google Scholar 

  31. 31.

    Scattolin, T. & Nolan, S. P. Synthetic routes to late transition metal–NHC complexes. Trends Chem. 2, 721–736 (2020).

    CAS  Google Scholar 

  32. 32.

    Garrison, J. C. & Youngs, W. J. Ag(I) N-heterocyclic carbene complexes: synthesis, structure, and application. Chem. Rev. 105, 3978–4008 (2005).

    CAS  PubMed  Google Scholar 

  33. 33.

    Nahra, F., Gómez-Herrera, A. & Cazin, C. S. J. Copper(I)–NHC complexes as NHC transfer agents. Dalton Trans. 46, 628–631 (2017).

    CAS  PubMed  Google Scholar 

  34. 34.

    Fèvre, M. et al. Imidazol(in)ium hydrogen carbonates as a genuine source of N-heterocyclic carbenes (NHCs): applications to the facile preparation of NHC metal complexes and to NHC-organocatalyzed molecular and macromolecular syntheses. J. Am. Chem. Soc. 134, 6776–6784 (2012).

    PubMed  Google Scholar 

  35. 35.

    Zhu, S. et al. A direct and practical approach for the synthesis of Au(I)–NHC complexes from commercially available imidazolium salts and Au(III) salts. Tetrahedron Lett. 53, 815–818 (2012).

    CAS  Google Scholar 

  36. 36.

    Landers, B. & Navarro, O. Microwave-assisted synthesis of (N-heterocyclic carbene)MCl complexes of group 11 metals. Eur. J. Inorg. Chem. 2012, 2980–2982 (2012).

    CAS  Google Scholar 

  37. 37.

    Collado, A., Gómez-Suárez, A., Martin, A. R., Slawin, A. M. Z. & Nolan, S. P. Straightforward synthesis of [Au(NHC)X] (NHC = N-heterocyclic carbene, X = Cl, Br, I) complexes. Chem. Commun. 49, 5541–5543 (2013).

    CAS  Google Scholar 

  38. 38.

    Visbal, R., Laguna, A. & Gimeno, M. C. Simple and efficient synthesis of [MCI(NHC)] (M = Au, Ag) complexes. Chem. Commun. 49, 5642–5644 (2013).

    CAS  Google Scholar 

  39. 39.

    Johnson, A. & Gimeno, M. C. An efficient and sustainable synthesis of NHC gold complexes. Chem. Commun. 52, 9664–9667 (2016).

    CAS  Google Scholar 

  40. 40.

    Santoro, O., Collado, A., Slawin, A. M. Z., Nolan, S. P. & Cazin, C. S. J. A general synthetic route to [Cu(X)(NHC)] (NHC = N-heterocyclic carbene, X = Cl, Br, I) complexes. Chem. Commun. 49, 10483–10485 (2013).

    CAS  Google Scholar 

  41. 41.

    Savka, R. & Plenio, H. Facile synthesis of [(NHC)MX(cod)] and [(NHC)MCl(CO)2] (M = Rh, Ir; X = Cl, I) complexes. Dalton Trans. 44, 891–893 (2015).

    CAS  PubMed  Google Scholar 

  42. 42.

    Zinser, C. et al. A simple synthetic entryway into palladium cross-coupling catalysis. Chem. Commun. 53, 7990–7993 (2017).

    CAS  Google Scholar 

  43. 43.

    Guillet, S. G. et al. Understanding existing and designing novel synthetic routes to Pd-PEPPSI-NHC and Pd-PEPPSI-PR3 pre-catalysts. Chem. Commun. 56, 5953–5956 (2020).

    CAS  Google Scholar 

  44. 44.

    Tzouras, N. V. et al. A mechanistically and operationally simple route to metal–N‐heterocyclic carbene (NHC) complexes. Chem. Eur. J. 26, 4515–4519 (2020).

    CAS  PubMed  Google Scholar 

  45. 45.

    Gaillard, S., Slawin, A. M. Z. & Nolan, S. P. A N-heterocyclic carbene gold hydroxide complex: a golden synthon. Chem. Commun. 46, 2742–2744 (2010).

    CAS  Google Scholar 

  46. 46.

    Gasperini, D. et al. Gold-acetonyl complexes: from side-products to valuable synthons. Chem. Eur. J. 21, 5403–5412 (2015).

    CAS  PubMed  Google Scholar 

  47. 47.

    Tzouras, N. V. et al. Simple synthetic routes to N‐heterocyclic carbene gold(I)–aryl complexes: expanded scope and reactivity. Chem. Eur. J. 26, 5541–5551 (2020).

    CAS  PubMed  Google Scholar 

  48. 48.

    Ramón, R. S., Veenboer, R. M. P., Nahra, F. & Nolan, S. P. N,N′-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene gold(I) chloride. in Encyclopedia of Reagents for Organic Synthesis (Wiley, 2019).

  49. 49.

    Obradors, C. & Echavarren, A. M. Chloro[1,3‐dihydro‐1,3‐bis(2,4,6‐trimethylphenyl)‐2H‐imidazol‐2‐ylidene]gold. in Encyclopedia of Reagents for Organic Synthesis (Wiley, 2011).

  50. 50.

    Gómez-Suárez, A. et al. Influence of a very bulky N-heterocyclic carbene in gold-mediated catalysis. Organometallics 30, 5463–5470 (2011).

    Google Scholar 

  51. 51.

    Nahra, F. et al. Hydrofluorination of alkynes catalysed by gold bifluorides. ChemCatChem 7, 240–244 (2014).

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Hussong, M. W., Rominger, F., Krämer, P. & Straub, B. F. Isolation of a non-heteroatom-stabilized gold–carbene complex. Angew. Chem. Int. Ed. 53, 9372–9375 (2014).

    CAS  Google Scholar 

  53. 53.

    de Frémont, P., Singh, R., Stevens, E. D., Petersen, J. L. & Nolan, S. P. Synthesis, characterization and reactivity of N-heterocyclic carbene gold(III) complexes. Organometallics 26, 1376–1385 (2007).

    Google Scholar 

  54. 54.

    Nahra, F. & Nolan, S. P. [1,3-bis[2,6-bis(1-methylethyl)phenyl]-1,3-dihydro-2H-imidazol-2-ylidene]hydroxy gold. in Encyclopedia of Reagents for Organic Synthesis (Wiley, 2017).

  55. 55.

    Tkatchouk, E., Mankad, N. P., Benitez, D., Goddard, W. A. & Toste, F. D. Two metals are better than one in the gold catalyzed oxidative heteroarylation of alkenes. J. Am. Chem. Soc. 133, 14293–14300 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Ibrahim, N., Vilhelmsen, M. H., Pernpointner, M., Rominger, F. & Hashmi, A. S. K. Gold phenolate complexes: synthesis, structure, and reactivity. Organometallics 32, 2576–2583 (2013).

    CAS  Google Scholar 

  57. 57.

    Nun, P., Ramón, R. S., Gaillard, S. & Nolan, S. P. Efficient silver-free gold(I)-catalyzed hydration of alkynes at low catalyst loading. J. Organomet. Chem. 696, 7–11 (2011).

    CAS  Google Scholar 

  58. 58.

    Ramón, R. S. et al. Gold-catalyzed Meyer−Schuster rearrangement: application to the synthesis of prostaglandins. Organometallics 29, 3665–3668 (2010).

    Google Scholar 

  59. 59.

    Boogaerts, I. I. F. & Nolan, S. P. Carboxylation of C−H bonds using N-heterocyclic carbene gold(I) complexes. J. Am. Chem. Soc. 132, 8858–8859 (2010).

    CAS  PubMed  Google Scholar 

  60. 60.

    Nun, P., Egbert, J. D., Oliva-Madrid, M.-J. & Nolan, S. P. Gold(I)-catalyzed stereoselective synthesis of alkenyl phosphates by hydrophosphoryloxylation. Chem. Eur. J. 18, 1064–1067 (2011).

    PubMed  Google Scholar 

  61. 61.

    Patrick, S. R., Gómez-Suárez, A., Slawin, A. M. Z. & Nolan, S. P. New [Au(NHC)(OH)] complexes for silver-free protocols. Organometallics 33, 421–424 (2013).

    Google Scholar 

  62. 62.

    Patrick, S. R., Collado, A., Meiries, S., Slawin, A. M. Z. & Nolan, S. P. Synthesis and characterisation of Au(I)-(ITent) complexes. J. Organomet. Chem. 775, 152–154 (2015).

    CAS  Google Scholar 

  63. 63.

    Nahra, F., Patrick, S. R., Collado, A. & Nolan, S. P. A novel route for large-scale synthesis of [Au(NHC)(OH)] complexes. Polyhedron 84, 59–62 (2014).

    CAS  Google Scholar 

  64. 64.

    Gómez-Suárez, A. & Nolan, S. P. Dinuclear gold catalysis: are two gold centers better than one? Angew. Chem. Int. Ed. 51, 8156–8159 (2013).

    Google Scholar 

  65. 65.

    Hashmi, A. S. K. Dual gold catalysis. Acc. Chem. Res. 47, 864–876 (2014).

    CAS  PubMed  Google Scholar 

  66. 66.

    Ramón, R. S. et al. [{Au(IPr)}2(μ-OH)]X Complexes: synthetic, structural and catalytic studies. Chem. Eur. J. 17, 1238–1246 (2010).

    PubMed  Google Scholar 

  67. 67.

    Gómez-Suárez, A., Oonishi, Y., Meiries, S. & Nolan, S. P. [{Au(NHC)}2(μ-OH)][BF4]: silver-free and acid-free catalysts for water-inclusive gold-mediated organic transformations. Organometallics 32, 1106–6993 (2013).

    Google Scholar 

  68. 68.

    Oonishi, Y., Gómez-Suárez, A., Martin, A. & Nolan, S. P. Hydrophenoxylation of alkynes by cooperative gold catalysis. Angew. Chem. Int. Ed. 52, 9767–9771 (2013).

    CAS  Google Scholar 

  69. 69.

    Dupuy, S., Gasperini, D. & Nolan, S. P. Highly efficient gold(I)-catalyzed regio- and stereoselective hydrocarboxylation of internal alkynes. ACS Catal. 5, 6918–6921 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Veenboer, R. M. P., Dupuy, S. & Nolan, S. P. Stereoselective gold(I)-catalyzed intermolecular hydroalkoxlation of alkynes. ACS Catal. 5, 1330–1334 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Gasperini, D. et al. Gold(I)-catalysed cyclisation of alkynoic acids: towards an efficient and eco-friendly synthesis of γ-, δ- and ϵ-lactones. Adv. Synth. Catal. 358, 3857–3862 (2016).

    CAS  Google Scholar 

  72. 72.

    Gómez-Suárez, A., Dupuy, S., Slawin, A. M. Z. & Nolan, S. P. Straightforward synthetic access to gem-diaurated and digold σ,π-acetylide species. Angew. Chem. Int. Ed. 52, 938–942 (2012).

    Google Scholar 

  73. 73.

    Gagosz, F. Gold vinylidenes as useful intermediates in synthetic organic chemistry. Synthesis 51, 1087–1099 (2019).

    CAS  Google Scholar 

  74. 74.

    Ferrer, S. & Echavarren, A. M. Role of σ,π-digold(I) alkyne complexes in reactions of enynes. Organometallics 37, 781–786 (2018).

    CAS  PubMed  Google Scholar 

  75. 75.

    Hashmi, A. S. K. et al. Dual gold catalysis: σ,π-propyne acetylide and hydroxyl-bridged digold complexes as easy-to-prepare and easy-to-handle precatalysts. Chem. Eur. J. 19, 1058–1065 (2013).

    CAS  PubMed  Google Scholar 

  76. 76.

    Collado, A. et al. Trapping atmospheric CO2 with gold. Chem. Commun. 50, 11321–11324 (2014).

    CAS  Google Scholar 

  77. 77.

    Nahra, F. & Nolan, S. P. Bis{1,3‐bis[2,6‐bis(1‐methylethyl)phenyl]‐1,3‐dihydro‐2H‐imidazol‐2‐ylidene}‐μ‐hydroxydigold(I) Tetrafluoroborate. in Encyclopedia of Reagents for Organic Synthesis (Wiley, 2017).

  78. 78.

    Bantreil, X. & Nolan, S. P. Synthesis of N-heterocyclic carbene ligands and derived ruthenium olefin metathesis catalysts. Nat. Protoc. 6, 69–77 (2010).

    PubMed  Google Scholar 

  79. 79.

    Chartoire, A. et al. Recyclable NHC catalyst for the development of a generalized approach to continuous Buchwald–Hartwig reaction and workup. Org. Proc. Res. Dev. 20, 551–557 (2016).

    CAS  Google Scholar 

  80. 80.

    Dash, K. C. & Schmidbaur, H. Organogold-Chemie, XII. Komplexe von Gold(I)- und Gold (III)-halogeniden mit Thioäthern. Chem. Ber. 106, 1221–1225 (1973).

    CAS  Google Scholar 

  81. 81.

    Marion, N., Ramón, R. S. & Nolan, S. P. [(NHC)AuI]-catalyzed acid-free alkyne hydration at part-per-million catalyst loadings. J. Am. Chem. Soc. 131, 448–449 (2009).

    CAS  PubMed  Google Scholar 

  82. 82.

    Gaillard, S. et al. Development of versatile and silver-free protocols for gold(I) catalysis. Chem. Eur. J. 16, 13729–13740 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to VLAIO (SBO project CO2PERATE). The Special Research Fund of Ghent University is acknowledged for a doctoral scholarship (01D14919) to N.V.T., as well as starting and project grants to S.P.N. The Research Foundation–Flanders is also gratefully acknowledged for a Fundamental Research PhD fellowship to N.V.T. (11I6921N).

Author information

Affiliations

Authors

Contributions

F.N., N.V.T., A.C. and S.P.N. were involved in the design and optimization of the procedures described here. The manuscript was assembled and edited by all authors.

Corresponding authors

Correspondence to Fady Nahra or Steven P. Nolan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Carlo Santini and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Collado, A. et al. Chem. Commun. 49, 5541–5543 (2013): https://doi.org/10.1039/C3CC43076F

Nahra, F. et al. Polyhedron 84, 59–62 (2014): https://doi.org/10.1016/j.poly.2014.06.017

Gaillard, S. et al. Chem. Commun. 46, 2742–2744 (2010): https://doi.org/10.1039/C0CC00018C

Gaillard, S. et al. Chem. Eur. J. 16, 13729–13740 (2010): https://doi.org/10.1002/chem.201001688

Key data used in this protocol

Collado, A. et al. Chem. Commun. 49, 5541–5543 (2013): https://doi.org/10.1039/C3CC43076F

Nahra, F. et al. Polyhedron 84, 59–62 (2014): https://doi.org/10.1016/j.poly.2014.06.017

Gaillard, S. et al. Chem. Eur. J. 16, 13729–13740 (2010): https://doi.org/10.1002/chem.201001688

Gómez-Suárez, A. et al. Organometallics 32, 1106–1111 (2013): https://doi.org/10.1021/om301249r

Marion, N. et al. J. Am. Chem. Soc. 131, 448–449 (2009): https://doi.org/10.1021/ja809403e

Nun, P. et al. J. Organomet. Chem. 696, 7–11 (2011): https://doi.org/10.1016/j.jorganchem.2010.08.052

Supplementary information

Supplementary Information

General considerations and Supplementary Figs. 1–5.

Supplementary Data 1

Raw NMR data for Complex 8 and IR data for Complexes 7 and 8

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nahra, F., Tzouras, N.V., Collado, A. et al. Synthesis of N-heterocyclic carbene gold(I) complexes. Nat Protoc 16, 1476–1493 (2021). https://doi.org/10.1038/s41596-020-00461-6

Download citation

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing