Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mapping mechanical properties of biological materials via an add-on Brillouin module to confocal microscopes


Several techniques have been developed over the past few decades to assess the mechanical properties of biological samples, which has fueled a rapid growth in the fields of biophysics, bioengineering, and mechanobiology. In this context, Brillouin optical spectroscopy has long been known as an intriguing modality for noncontact material characterization. However, limited by speed and sample damage, it had not translated into a viable imaging modality for biomedically relevant materials. Recently, based on a novel spectroscopy strategy that substantially improves the speed of Brillouin measurement, confocal Brillouin microscopy has emerged as a unique complementary tool to traditional methods as it allows noncontact, nonperturbative, label-free measurements of material mechanical properties. The feasibility and potential of this innovative technique at both the cell and tissue level have been extensively demonstrated over the past decade. As Brillouin technology is rapidly recognized, a standard approach for building and operating Brillouin microscopes is required to facilitate the widespread adoption of this technology. In this protocol, we aim to establish a robust approach for instrumentation, and data acquisition and analysis. By carefully following this protocol, we expect that a Brillouin instrument can be built in 5–9 days by a person with basic optics knowledge and alignment experience; the data acquisition as well as postprocessing can be accomplished within 2–8 h.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Principle of spontaneous Brillouin scattering.
Fig. 2: Schematics of SBS and ISBS.
Fig. 3: Schematic of the confocal Brillouin microscope.
Fig. 4: Brillouin spectrum acquisition and calibration.
Fig. 5
Fig. 6
Fig. 7: VIPA pattern of the Brillouin spectrometer.
Fig. 8: Characterization of the Brillouin spectrometer.
Fig. 9: Brillouin image of live 3T3 cells.

Data availability

The authors declare that all data supporting the findings of this study are available within the paper and its Supplementary Information files. The raw Brillouin spectra of Figs. 8 and 9 are available via Figshare ( Source data are provided with this paper.

Code availability

The MATLAB code to analyze images as well as representative raw data are provided as Supplementary Data 1.


  1. 1.

    Vogel, V. & Sheetz, M. Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 7, 265–275 (2006).

    CAS  PubMed  Google Scholar 

  2. 2.

    Discher, D. E., Janmey, P. & Wang, Y.-L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    CAS  PubMed  Google Scholar 

  3. 3.

    Wozniak, M. A. & Chen, C. S. Mechanotransduction in development: a growing role for contractility. Nat. Rev. Mol. Cell Biol. 10, 34–43 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Miller, C. J. & Davidson, L. A. The interplay between cell signalling and mechanics in developmental processes. Nat. Rev. Genet. 14, 733–744 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Gilkes, D. M., Semenza, G. L. & Wirtz, D. Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat. Rev. Cancer 14, 430–439 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Orr, A. W., Helmke, B. P., Blackman, B. R. & Schwartz, M. A. Mechanisms of mechanotransduction. Dev. Cell 10, 11–20 (2006).

    CAS  PubMed  Google Scholar 

  7. 7.

    Polacheck, W. J. & Chen, C. S. Measuring cell-generated forces: a guide to the available tools. Nat. Methods 13, 415–423 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Bao, G. & Suresh, S. Cell and molecular mechanics of biological materials. Nat. Mater. 2, 715–725 (2003).

    CAS  PubMed  Google Scholar 

  9. 9.

    Campas, O. A toolbox to explore the mechanics of living embryonic tissues. Semin. Cell Dev. Biol. 55, 119–130 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Heinisch, J. J., Dupres, V., Alsteens, D. & Dufrêne, Y. F. Measurement of the mechanical behavior of yeast membrane sensors using single-molecule atomic force microscopy. Nat. Protoc. 5, 670 (2010).

    CAS  PubMed  Google Scholar 

  11. 11.

    Stewart, M. P., Toyoda, Y., Hyman, A. A. & Müller, D. J. Tracking mechanics and volume of globular cells with atomic force microscopy using a constant-height clamp. Nat. Protoc. 7, 143 (2012).

    CAS  PubMed  Google Scholar 

  12. 12.

    Benaglia, S., Gisbert, V. G., Perrino, A. P., Amo, C. A. & Garcia, R. Fast and high-resolution mapping of elastic properties of biomolecules and polymers with bimodal AFM. Nat. Protoc. 13, 2890–2907 (2018).

    CAS  PubMed  Google Scholar 

  13. 13.

    Efremov, Y. M., Cartagena-Rivera, A. X., Athamneh, A. I., Suter, D. M. & Raman, A. Mapping heterogeneity of cellular mechanics by multi-harmonic atomic force microscopy. Nat. Protoc. 13, 2200–2216 (2018).

    CAS  PubMed  Google Scholar 

  14. 14.

    Krieg, M. et al. Atomic force microscopy-based mechanobiology. Nat. Rev. Phys. 1, 41–57 (2019).

    Google Scholar 

  15. 15.

    Trier, S. M. & Davidson, L. A. Quantitative microscopy and imaging tools for the mechanical analysis of morphogenesis. Curr. Opin. Genet. Dev. 21, 664–670 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Chevalier, N. R., Gazguez, E., Dufour, S. & Fleury, V. Measuring the micromechanical properties of embryonic tissues. Methods 94, 120–128 (2016).

    CAS  PubMed  Google Scholar 

  17. 17.

    Evans, E. & Yeung, A. Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys. J. 56, 151–160 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Hochmuth, R. M. Micropipette aspiration of living cells. J. Biomech. 33, 15–22 (2000).

    CAS  PubMed  Google Scholar 

  19. 19.

    Desprat, N., Guiroy, A. & Asnacios, A. Microplates-based rheometer for a single living cell. Rev. Sci. Instrum. 77, 055111 (2006).

    Google Scholar 

  20. 20.

    Caille, N., Tardy, Y. & Meister, J.-J. Assessment of strain field in endothelial cells subjected to uniaxial deformation of their substrate. Ann. Biomed. Eng. 26, 409–416 (1998).

    CAS  PubMed  Google Scholar 

  21. 21.

    Svoboda, K. & Block, S. M. Biological applications of optical forces. Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).

    CAS  PubMed  Google Scholar 

  22. 22.

    Lee, W. M., Reece, P. J., Marchington, R. F., Metzger, N. K. & Dholakia, K. Construction and calibration of an optical trap on a fluorescence optical microscope. Nat. Protoc. 2, 3226 (2007).

    CAS  PubMed  Google Scholar 

  23. 23.

    Wang, N., Butler, J. P. & Ingber, D. E. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260, 1124–1127 (1993).

    CAS  PubMed  Google Scholar 

  24. 24.

    Zhang, Y. et al. Interfacing 3D magnetic twisting cytometry with confocal fluorescence microscopy to image force responses in living cells. Nat. Protoc. 12, 1437 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Bausch, A. R., Möller, W. & Sackmann, E. Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophys. J. 76, 573–579 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Mason, T., Ganesan, K., Van Zanten, J., Wirtz, D. & Kuo, S. C. Particle tracking microrheology of complex fluids. Phys. Rev. Lett. 79, 3282 (1997).

    CAS  Google Scholar 

  27. 27.

    Serwane, F. et al. In vivo quantification of spatially varying mechanical properties in developing tissues. Nat. Methods 14, 181–186 (2017).

    CAS  PubMed  Google Scholar 

  28. 28.

    Guck, J. et al. The optical stretcher: a novel laser tool to micromanipulate cells. Biophys. J. 81, 767–784 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Wang, S. & Larin, K. V. Optical coherence elastography for tissue characterization: a review. J. Biophotonics 8, 279–302 (2015).

    PubMed  Google Scholar 

  30. 30.

    Kennedy, B. F., Wijesinghe, P. & Sampson, D. D. The emergence of optical elastography in biomedicine. Nat. Photonics 11, 215–221 (2017).

    CAS  Google Scholar 

  31. 31.

    Gossett, D. R. et al. Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc. Natl Acad. Sci. USA 109, 7630–7635 (2012).

    CAS  PubMed  Google Scholar 

  32. 32.

    Otto, O. et al. Real-time deformability cytometry: on-the-fly cell mechanical phenotyping. Nat. Methods 12, 199–202 (2015).

    CAS  PubMed  Google Scholar 

  33. 33.

    Hartono, D. et al. On-chip measurements of cell compressibility via acoustic radiation. Lab Chip 11, 4072–4080 (2011).

    CAS  PubMed  Google Scholar 

  34. 34.

    Kang, J. H. et al. Noninvasive monitoring of single-cell mechanics by acoustic scattering. Nat. Methods 16, 263–269 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Dil, J. G. Brillouin scattering in condensed matter. Rep. Prog. Phys. 45, 285–334 (1982).

    Google Scholar 

  36. 36.

    Scarcelli, G. & Yun, S. H. Confocal Brillouin microscopy for three-dimensional mechanical imaging. Nat. Photonics 2, 39–43 (2008).

    CAS  Google Scholar 

  37. 37.

    Prevedel, R., Diz-Muñoz, A., Ruocco, G. & Antonacci, G. Brillouin microscopy: an emerging tool for mechanobiology. Nat. Methods 16, 969–977 (2019).

    CAS  PubMed  Google Scholar 

  38. 38.

    Palombo, F. & Fioretto, D. Brillouin light scattering: applications in biomedical sciences. Chem. Rev. 119, 7833–7847 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Scarcelli, G. et al. Noncontact three-dimensional mapping of intracellular hydro-mechanical properties by Brillouin microscopy. Nat. Methods 12, 1132–1134 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Scarcelli, G., Kim, P. & Yun, S. H. In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy. Biophys. J. 101, 1539–1545 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Scarcelli, G., Pineda, R. & Yun, S. H. Brillouin optical microscopy for corneal biomechanics. Investig. Ophthalmol. Vis. Sci. 53, 185–190 (2012).

    Google Scholar 

  42. 42.

    Scarcelli, G., Besner, S., Pineda, R. & Yun, S. H. Biomechanical characterization of keratoconus corneas ex vivo with Brillouin microscopy. Investig. Ophthalmol. Vis. Sci. 55, 4490–4495 (2014).

    Google Scholar 

  43. 43.

    Scarcelli, G., Besner, S., Pineda, R., Kalout, P. & Yun, S. H. In vivo biomechanical mapping of normal and keratoconus corneas. JAMA Ophthalmol. 133, 480–482 (2015).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Elsayad, K. et al. Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging. Sci. Signal 9, rs5 (2016).

    PubMed  Google Scholar 

  45. 45.

    Schlüßler, R. et al. Mechanical mapping of spinal cord growth and repair in living zebrafish larvae by brillouin imaging. Biophys. J. 115, 911–923 (2018).

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Zhang, J. et al. Tissue biomechanics during cranial neural tube closure measured by Brillouin microscopy and optical coherence tomography. Birth Defects Res. 111, 991–998 (2018).

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Antonacci, G., de Turris, V., Rosa, A. & Ruocco, G. Background-deflection Brillouin microscopy reveals altered biomechanics of intracellular stress granules by ALS protein FUS. Commun. Biol. 1, 1–8 (2018).

    CAS  Google Scholar 

  48. 48.

    Gouveia, R. M. et al. Assessment of corneal substrate biomechanics and its effect on epithelial stem cell maintenance and differentiation. Nat. Commun. 10, 1496 (2019).

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Margueritat, J. et al. High-frequency mechanical properties of tumors measured by Brillouin light scattering. Phys. Rev. Lett. 122, 018101 (2019).

    CAS  PubMed  Google Scholar 

  50. 50.

    Conrad, C., Gray, K. M., Stroka, K. M., Rizvi, I. & Scarcelli, G. Mechanical characterization of 3D ovarian cancer nodules using Brillouin confocal microscopy. Cell. Mol. Bioeng. 12, 215–226 (2019).

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Zhang, J. et al. Nuclear mechanics within intact cells is regulated by cytoskeletal network and internal nanostructures. Small 16, 1907688 (2020).

    CAS  Google Scholar 

  52. 52.

    Lindsay, S., Anderson, M. & Sandercock, J. Construction and alignment of a high performance multipass vernier tandem Fabry–Perot interferometer. Rev. Sci. Instrum. 52, 1478–1486 (1981).

    CAS  Google Scholar 

  53. 53.

    Hickman, G. D. et al. Aircraft laser sensing of sound velocity in water: Brillouin scattering. Remote Sens. Environ. 36, 165–178 (1991).

    Google Scholar 

  54. 54.

    Harley, R., James, D., Miller, A. & White, J. Phonons and the elastic moduli of collagen and muscle. Nature 267, 285–287 (1977).

    CAS  PubMed  Google Scholar 

  55. 55.

    Cusack, S. & Miller, A. Determination of the elastic constants of collagen by Brillouin light scattering. J. Mol. Biol. 135, 39–51 (1979).

    CAS  PubMed  Google Scholar 

  56. 56.

    Randall, J. T. & Vaughan, J. M. Brillouin scattering in systems of biological significance. Philos. Trans. R. Soc. Lond. A 293, 341–348 (1979).

    CAS  Google Scholar 

  57. 57.

    Vaughan, J. & Randall, J. Brillouin scattering, density and elastic properties of the lens and cornea of the eye. Nature 284, 489–491 (1980).

    CAS  PubMed  Google Scholar 

  58. 58.

    Randall, J. & Vaughan, J. The measurement and interpretation of Brillouin scattering in the lens of the eye. Proc. R. Sci. Lond. B 214, 449–470 (1982).

    CAS  Google Scholar 

  59. 59.

    Lee, S. et al. A Brillouin scattering study of the hydration of Li-and Na-DNA films. Biopolymers 26, 1637–1665 (1987).

    CAS  PubMed  Google Scholar 

  60. 60.

    Lees, S., Tao, N.-J. & Lindsay, S. Studies of compact hard tissues and collagen by means of Brillouin light scattering. Connect. Tissue Res. 24, 187–205 (1990).

    CAS  PubMed  Google Scholar 

  61. 61.

    Itoh, S.-i, Yamana, T. & Kojima, S. Quick measurement of Brillouin spectra of glass-forming material trimethylene glycol by angular dispersion-type Fabry–Perot interferometer system. Jpn. J. Appl. Phys. 35, 2879 (1996).

    CAS  Google Scholar 

  62. 62.

    Koski, K. & Yarger, J. Brillouin imaging. Appl. Phys. Lett. 87, 061903 (2005).

    Google Scholar 

  63. 63.

    Shirasaki, M. Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer. Opt. Lett. 21, 366–368 (1996).

    CAS  PubMed  Google Scholar 

  64. 64.

    Scarcelli, G. & Yun, S. H. Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy. Opt. Express 19, 10913–10922 (2011).

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Berghaus, K. V., Yun, S. H. & Scarcelli, G. High speed sub-GHz spectrometer for Brillouin scattering analysis. J. Vis. Exp. 106, e53468 (2015).

    Google Scholar 

  66. 66.

    Antonacci, G., Lepert, G., Paterson, C. & Török, P. Elastic suppression in Brillouin imaging by destructive interference. Appl. Phys. Lett. 107, 061102 (2015).

    Google Scholar 

  67. 67.

    Meng, Z., Traverso, A. J. & Yakovlev, V. V. Background clean-up in Brillouin microspectroscopy of scattering medium. Opt. Express 22, 5410–5415 (2014).

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Fiore, A., Zhang, J., Shao, P., Yun, S. H. & Scarcelli, G. High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media. Appl. Phys. Lett. 108, 203701 (2016).

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Edrei, E., Gather, M. C. & Scarcelli, G. Integration of spectral coronagraphy within VIPA-based spectrometers for high extinction Brillouin imaging. Opt. Express 25, 6895–6903 (2017).

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    Nikolić, M. & Scarcelli, G. Long-term Brillouin imaging of live cells with reduced absorption-mediated damage at 660nm wavelength. Biomed. Opt. Express 10, 1567–1580 (2019).

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Zhang, J., Fiore, A., Yun, S.-H., Kim, H. & Scarcelli, G. Line-scanning Brillouin microscopy for rapid non-invasive mechanical imaging. Sci. Rep. 6, 35398 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Raghunathan, R. et al. Evaluating biomechanical properties of murine embryos using Brillouin microscopy and optical coherence tomography. J. Biomed. Opt. 22, 086013 (2017).

    PubMed Central  Google Scholar 

  73. 73.

    Roberts C. J. Biomechanics in keratoconus. in Textbook of Keratoconus: New Insights (ed. Barbara, A.) 29–32 (Jaypee Brothers Medical Publishers, 2012).

  74. 74.

    Yun, S. H. & Chernyak, D. Brillouin microscopy: assessing ocular tissue biomechanics. Curr. Opin. Ophthalmol. 29, 299 (2018).

    PubMed  PubMed Central  Google Scholar 

  75. 75.

    Webb, J. N., Zhang, H., Roy, A. S., Randleman, J. B. & Scarcelli, G. Detecting mechanical anisotropy of the cornea using Brillouin microscopy. Transl. Vis. Sci. Technol. 9, 26–26 (2020).

    PubMed  PubMed Central  Google Scholar 

  76. 76.

    Eltony, A. M., Shao, P. & Yun, S.-H. Measuring mechanical anisotropy of the cornea with Brillouin microscopy. Preprint at (2020).

  77. 77.

    Shao, P. et al. Spatially-resolved Brillouin spectroscopy reveals biomechanical abnormalities in mild to advanced keratoconus in vivo. Sci. Rep. 9, 1–12 (2019).

    Google Scholar 

  78. 78.

    Reiß, S., Burau, G., Stachs, O., Guthoff, R. & Stolz, H. Spatially resolved Brillouin spectroscopy to determine the rheological properties of the eye lens. Biomed. Opt. Express 2, 2144–2159 (2011).

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Besner, S., Scarcelli, G., Pineda, R. & Yun, S.-H. In vivo Brillouin analysis of the aging crystalline lens. Investig. Ophthalmol. Vis. Sci. 57, 5093–5100 (2016).

    Google Scholar 

  80. 80.

    Weber, I. P., Yun, S. H., Scarcelli, G. & Franze, K. The role of cell body density in ruminant retina mechanics assessed by atomic force and Brillouin microscopy. Phys. Biol. 14, 065006 (2017).

    PubMed  PubMed Central  Google Scholar 

  81. 81.

    Shawky, J. H. & Davidson, L. A. Tissue mechanics and adhesion during embryo development. Dev. Biol. 401, 152–164 (2015).

    CAS  PubMed  Google Scholar 

  82. 82.

    Bevilacqua, C., Sánchez-Iranzo, H., Richter, D., Diz-Muñoz, A. & Prevedel, R. Imaging mechanical properties of sub-micron ECM in live zebrafish using Brillouin microscopy. Biomed. Opt. Express 10, 1420–1431 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Wang, N., Tytell, J. D. & Ingber, D. E. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat. Rev. Mol. Cell Biol. 10, 75–82 (2009).

    CAS  PubMed  Google Scholar 

  84. 84.

    Kirby, T. J. & Lammerding, J. Emerging views of the nucleus as a cellular mechanosensor. Nat. Cell Biol. 20, 373–381 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Meng, Z., Bustamante Lopez, S. C., Meissner, K. E. & Yakovlev, V. V. Subcellular measurements of mechanical and chemical properties using dual Raman–Brillouin microspectroscopy. J. Biophotonics 9, 201–207 (2016).

    CAS  PubMed  Google Scholar 

  86. 86.

    Antonacci, G. & Braakman, S. Biomechanics of subcellular structures by non-invasive Brillouin microscopy. Sci. Rep. 6, 37217 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Altartouri, B. et al. Pectin chemistry and cellulose crystallinity govern pavement cell morphogenesis in a multi-step mechanism. Plant Physiol. 181, 127–141 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Zhang, J., Nou, X. A., Kim, H. & Scarcelli, G. Brillouin flow cytometry for label-free mechanical phenotyping of the nucleus. Lab Chip 17, 663–670 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Suresh, S. Biomechanics and biophysics of cancer cells. Acta Mater. 55, 3989–4014 (2007).

    CAS  Google Scholar 

  90. 90.

    Guck, J. et al. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys. J. 88, 3689–3698 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Cross, S. E., Jin, Y.-S., Rao, J. & Gimzewski, J. K. Nanomechanical analysis of cells from cancer patients. Nat. Nanotechnol. 2, 780 (2007).

    CAS  PubMed  Google Scholar 

  92. 92.

    Li, Q., Lee, G. Y., Ong, C. N. & Lim, C. T. AFM indentation study of breast cancer cells. Biochem. Biophys. Res. Commun. 374, 609–613 (2008).

    CAS  PubMed  Google Scholar 

  93. 93.

    Plodinec, M. et al. The nanomechanical signature of breast cancer. Nat. Nanotechnol. 7, 757–765 (2012).

    CAS  PubMed  Google Scholar 

  94. 94.

    Prabhune, M., Belge, G., Dotzauer, A., Bullerdiek, J. & Radmacher, M. Comparison of mechanical properties of normal and malignant thyroid cells. Micron 43, 1267–1272 (2012).

    PubMed  Google Scholar 

  95. 95.

    Wisniewski, E. et al. Dorsoventral polarity directs cell responses to migration track geometries. Sci. Adv. 6, eaba6505 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Koski, K. J., Akhenblit, P., McKiernan, K. & Yarger, J. L. Non-invasive determination of the complete elastic moduli of spider silks. Nat. Mater. 12, 262–267 (2013).

    CAS  PubMed  Google Scholar 

  97. 97.

    Mercatelli, R. et al. Morpho-mechanics of human collagen superstructures revealed by all-optical correlative micro-spectroscopies. Commun. Biol. 2, 1–10 (2019).

    Google Scholar 

  98. 98.

    Palombo, F. et al. Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering. J. R. Soc. Interface 11, 20140739 (2014).

    PubMed  PubMed Central  Google Scholar 

  99. 99.

    Speziale, S. et al. Sound velocity and elasticity of tetragonal lysozyme crystals by Brillouin spectroscopy. Biophys. J. 85, 3202–3213 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Yan, K. et al. Electrical programming of soft matter: using temporally varying electrical inputs to spatially control self assembly. Biomacromolecules 19, 364–373 (2018).

    CAS  PubMed  Google Scholar 

  101. 101.

    Meng, Z. et al. Assessment of local heterogeneity in mechanical properties of nanostructured hydrogel networks. ACS Nano 11, 7690–7696 (2017).

    CAS  PubMed  Google Scholar 

  102. 102.

    Bailey, M. et al. Brillouin microspectroscopy data of tissue-mimicking gelatin hydrogels. Data Brief. 29, 105267 (2020).

    PubMed  PubMed Central  Google Scholar 

  103. 103.

    Antonacci, G. et al. Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma. J. R. Soc. Interface 12, 20150843 (2015).

    PubMed  PubMed Central  Google Scholar 

  104. 104.

    Steelman, Z., Meng, Z., Traverso, A. J. & Yakovlev, V. V. Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis. J. Biophotonics 8, 408–414 (2015).

    CAS  PubMed  Google Scholar 

  105. 105.

    Mattana, S., Caponi, S., Tamagnini, F., Fioretto, D. & Palombo, F. Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis. J. Innov. Opt. Health Sci. 10, 1742001 (2017).

    PubMed  PubMed Central  Google Scholar 

  106. 106.

    Palombo, F. et al. Hyperspectral analysis applied to micro-Brillouin maps of amyloid-beta plaques in Alzheimer’s disease brains. Analyst 143, 6095–6102 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Troyanova-Wood, M., Gobbell, C., Meng, Z., Gashev, A. A. & Yakovlev, V. V. Optical assessment of changes in mechanical and chemical properties of adipose tissue in diet‐induced obese rats. J. Biophotonics 10, 1694–1702 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Troyanova-Wood, M., Meng, Z. & Yakovlev, V. V. Differentiating melanoma and healthy tissues based on elasticity-specific Brillouin microspectroscopy. Biomed. Opt. Express 10, 1774–1781 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Lainović, T. et al. Micromechanical imaging of dentin with Brillouin microscopy. Acta Biomater. 105, 214–222 (2020).

    PubMed  Google Scholar 

  110. 110.

    Stephen, M. A., Krainak, M. A. & Fahey, M. E. Lateral-transfer recirculating etalon spectrometer. Opt. Express 23, 30020–30027 (2015).

    CAS  PubMed  Google Scholar 

  111. 111.

    Scarponi, F. et al. High-performance versatile setup for simultaneous Brillouin–Raman microspectroscopy. Phys. Rev. X 7, 031015 (2017).

    Google Scholar 

  112. 112.

    Mattana, S. et al. Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques. Light Sci. Appl. 7, 17139–17139 (2018).

    PubMed  PubMed Central  Google Scholar 

  113. 113.

    Schneider, D. et al. Nonlinear control of high-frequency phonons in spider silk. Nat. Mater. 15, 1079–1083 (2016).

    CAS  PubMed  Google Scholar 

  114. 114.

    Boyd, R. W. Nonlinear Optics (Academic Press, 2003).

  115. 115.

    Ballmann, C. W. et al. Stimulated Brillouin scattering microscopic imaging. Sci. Rep. 5, 18139 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Remer, I. & Bilenca, A. Background-free Brillouin spectroscopy in scattering media at 780 nm via stimulated Brillouin scattering. Opt. Lett. 41, 926–929 (2016).

    CAS  PubMed  Google Scholar 

  117. 117.

    Remer, I. & Bilenca, A. High-speed stimulated Brillouin scattering spectroscopy at 780 nm. Appl. Photonics 1, 061301 (2016).

    Google Scholar 

  118. 118.

    Remer, I., Shemsesh, N., Ben-Zvi, A. & Bilenca, A. High sensitivity and specificity biomechanical imaging by stimulated Brillouin scattering microscopy. Nat. Methods 17, 913–916 (2020).

    CAS  PubMed  Google Scholar 

  119. 119.

    Nelson, K. A., Miller, R. D., Lutz, D. & Fayer, M. Optical generation of tunable ultrasonic waves. J. Appl. Phys. 53, 1144–1149 (1982).

    CAS  Google Scholar 

  120. 120.

    Ballmann, C. W., Meng, Z., Traverso, A. J., Scully, M. O. & Yakovlev, V. V. Impulsive Brillouin microscopy. Optica 4, 124–128 (2017).

    Google Scholar 

  121. 121.

    Krug, B., Koukourakis, N. & Czarske, J. W. Impulsive stimulated Brillouin microscopy for non-contact, fast mechanical investigations of hydrogels. Opt. Express 27, 26910–26923 (2019).

    CAS  PubMed  Google Scholar 

  122. 122.

    Guo, M. et al. Cell volume change through water efflux impacts cell stiffness and stem cell fate. Proc. Natl Acad. Sci. USA 114, E8618–E8627 (2017).

    CAS  PubMed  Google Scholar 

  123. 123.

    Wu, P.-J. et al. Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials. Nat. Methods 15, 561 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Scarcelli, G. & Yun, S. H. Reply to ‘Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials’. Nat. Methods 15, 562 (2018).

    CAS  PubMed  Google Scholar 

  125. 125.

    Xiao, S., Weiner, A. M. & Lin, C. A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory. IEEE J. Quantum Electron. 40, 420–426 (2004).

    CAS  Google Scholar 

  126. 126.

    Fiore, A., Bevilacqua, C. & Scarcelli, G. Direct three-dimensional measurement of refractive index via dual photon-phonon scattering. Phys. Rev. Lett. 122, 103901 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Caponi, S., Fioretto, D. & Mattarelli, M. On the actual spatial resolution of Brillouin Imaging. Opt. Lett. 45, 1063–1066 (2020).

    CAS  PubMed  Google Scholar 

  128. 128.

    Jacques, S. L. Optical properties of biological tissues: a review. Phys. Med. Biol. 58, R37 (2013).

    PubMed  Google Scholar 

  129. 129.

    Scarcelli, G. & Yun, S. H. In vivo Brillouin optical microscopy of the human eye. Opt. Express 20, 9197–9202 (2012).

    PubMed  PubMed Central  Google Scholar 

  130. 130.

    Shao, P. et al. Effects of corneal hydration on brillouin microscopy in vivo. Investig. Ophthalmol. Vis. Sci. 59, 3020–3027 (2018).

    CAS  Google Scholar 

  131. 131.

    Akilbekova, D. et al. Brillouin spectroscopy and radiography for assessment of viscoelastic and regenerative properties of mammalian bones. J. Biomed. Opt. 23, 097004 (2018).

    Google Scholar 

  132. 132.

    Cardinali, M. et al. Brillouin micro-spectroscopy of subchondral, trabecular bone and articular cartilage of the human femoral head. Biomed. Opt. Express 10, 2606–2611 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Antonacci, G., Foreman, M. R., Paterson, C. & Török, P. Spectral broadening in Brillouin imaging. Apply. Phys. Lett. 103, 221105 (2013).

    Google Scholar 

  134. 134.

    Ballmann, C. W., Meng, Z. & Yakovlev, V. V. Nonlinear Brillouin spectroscopy: what makes it a better tool for biological viscoelastic measurements. Biomed. Opt. Express 10, 1750–1759 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135.

    Caliari, S. R. & Burdick, J. A. A practical guide to hydrogels for cell culture. Nat. Methods 13, 405–414 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


The authors thank M. Nikolic and A. Fiore for helpful discussions, and H. Zhang and E. Frank for helping with the LabVIEW program. This work was supported in part by the National Institutes of Health (K25HD097288, R33CA204582, U01CA202177, R01EY028666 and R01HD095520) and the National Science Foundation (CMMI 1929412 and DBI 1942003).

Author information




Both authors conceived the idea; J.Z. performed the experiments; both authors wrote the manuscript.

Corresponding authors

Correspondence to Jitao Zhang or Giuliano Scarcelli.

Ethics declarations

Competing interests

G.S holds patents related to Brillouin technology (US7898656B2, US8115919B2 and US20200278250A1) and is a consultant for Intelon Optics. The other authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Robert Prevedel, Vladislav Yakovlev, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol:

Scarcelli, G. et al. Nat. Methods 12, 1132-1134 (2015):

Wisniewski, E. O. et al. Sci. Adv. 6, eaba6505 (2020):

Zhang, J. et al. Small 16, 1907688 (2020):

Supplementary information

Supplementary Information

Supplementary Figs. 1–4 and Data 2–4.

Reporting Summary

Supplementary Data 1

MATLAB codes and example data.

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Scarcelli, G. Mapping mechanical properties of biological materials via an add-on Brillouin module to confocal microscopes. Nat Protoc 16, 1251–1275 (2021).

Download citation


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing