Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Facile synthesis of per(6-O-tert-butyldimethylsilyl)-α-, β-, and γ-cyclodextrin as protected intermediates for the functionalization of the secondary face of the macrocycles

Abstract

Per(6-O-tert-butyldimethylsilyl)-α-, β- and γ-cyclodextrin derivatives are well-known as synthetic intermediates that enable the selective mono-, partial, or perfunctionalization of the secondary face of the macrocycles. Although silylation of the primary rim is readily achieved by treatment with tert-butyldimethylsilyl chloride in the presence of pyridine (either alone or mixed with a co-solvent), the reaction typically results in a mixture containing both under- and oversilylated byproducts that are difficult to remove. To address this challenge in preparing a pure product in high yield, we describe an approach that centers on the addition of a controlled excess of silylating agent to avoid the presence of undersilylated species, followed by the removal of oversilylated species by column chromatography elution with carefully designed solvent mixtures. This methodology works well for 6-, 7-, and 8-member rings (α-, β-, and γ-cyclodextrins, respectively) and has enabled us to repeatedly prepare up to ⁓35 g of ≥98% pure product (as determined by HPLC) in 3 d. We also provide procedures for lower-scale reactions, as well as an example of how the β-cyclodextrin derivative can be used for functionalization of the secondary face of the molecule.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis.
Fig. 2: Glassware setup.
Fig. 3: HPLC chromatograms.
Fig. 4: Glassware setup for silylation.
Fig. 5: Setup for weighing TBDMSCl.
Fig. 6: Monitoring of silylation progress.
Fig. 7: Flash column chromatography setup.

Similar content being viewed by others

Data availability

All new data within the protocol are described in the main text and, especially, in the Supplementary Information. We have uploaded data to ChemSpider:

Hexakis(6-O-tert-butyldimethylsilyl)-α-cyclodextrin: http://www.chemspider.com/Chemical-Structure.22906192.html?rid=1005ca4c-3af0-424e-9d66-ce62c6fbd2af

Heptakis(6-O-tert-butyldimethylsilyl)-β-cyclodextrin: http://www.chemspider.com/Chemical-Structure.9117549.html?rid=f58032ed-2a07-41d9-b0a1-e5f96834d59b

Octakis(6-O-tert-butyldimethylsilyl)-γ-cyclodextrin:

http://www.chemspider.com/Chemical-Structure.9161332.html?rid=9f13f13d-2816-437d-8c28-346dfa4e4f3b&page_num=0

References

  1. Villiers, A. Sur la transformation de la fécule en dextrine par le ferment butyrique. Compt. Rend. Acad. Sci. 112, 536–538 (1891).

    Google Scholar 

  2. Rekharsky, M. V. & Inoue, Y. Complexation thermodynamics of cyclodextrins. Chem. Rev. 98, 1875–1918 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Dodziuk, E. (ed.). Cyclodextrins and their Complexes: Chemistry, Analytical Methods, Applications (Wiley-VCH, 2006).

  4. Fenyvesi, É., Vikmon, M. & Szente, L. Cyclodextrins in food technology and human nutrition: benefits and limitations. Crit. Rev. Food Sci. Nutr. 56, 1981–2004 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Jansook, P., Ogawa, N. & Loftsson, T. Cyclodextrins: structure, physicochemical properties and pharmaceutical applications. Int. J. Pharm. 535, 272–284 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. He, Y., Hou, X., Liu, Y. & Feng, N. Recent progress in the synthesis, structural diversity and emerging applications of cyclodextrin-based metal–organic frameworks. J. Mater. Chem. B 7, 5602–5619 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Cova, T. F. G. G., Murtinho, D., Pais, A. A. C. C. & Valente, A. J. M. Cyclodextrin-based materials for removing micropollutants from wastewater. Curr. Org. Chem. 22, 2150–2181 (2018).

    Article  CAS  Google Scholar 

  8. Ogoshi, T. & Harada, A. Chemical sensors based on cyclodextrin derivatives. Sensors 8, 4961–4982 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Lenik, J. Cyclodextrins based electrochemical sensors for biomedical and pharmaceutical analysis. Curr. Med. Chem. 24, 2359–2391 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Jimenez Blanco, J. L., Benito, J. M., Ortiz Mellet, C. & Garcia Fernandez, J. M. Molecular nanoparticle-based gene delivery systems. J. Drug Deliv. Sci. Technol. 42, 18–37 (2017).

    Article  CAS  Google Scholar 

  11. Karimian, R. & Aghajani, M. Cyclodextrins and their derivatives as carrier molecules in drug and gene delivery systems. Curr. Org. Chem. 23, 1256–1269 (2019).

    Article  CAS  Google Scholar 

  12. Zhang, D. et al. Cyclodextrin-based delivery systems for cancer treatment. Mater. Sci. Eng. C 96, 872–886 (2019).

    Article  CAS  Google Scholar 

  13. Ben Mihoub, A. et al. Use of cyclodextrins in anticancer photodynamic therapy treatment. Molecules 23, 1936 (2018).

    Article  PubMed Central  Google Scholar 

  14. Guileu, S. & Sollogoub, M. Advances in cyclodextrin chemistry. in Modern Synthetic Methods in Carbohydrate Chemistry (eds. Werz, D. B. & Vidal, S.) 9.241–9.283 (Wiley-VCH, 2014).

  15. Wuts, P. G. M. & Greene, T. W. Greene’s Protective Groups in Organic Synthesis 4th edn (Wiley, 2007).

  16. Aizpurua, J. M., Cossio, F. P. & Palomo, C. Reagents and synthetic methods. 61. Reaction of hindered trialkylsilyl esters and trialkylsilyl ethers with triphenylphosphine dibromide: preparation of carboxylic acid bromides and alkyl bromides under mild neutral conditions. J. Org. Chem. 51, 4941–4943 (1986).

    Article  CAS  Google Scholar 

  17. Hanessian, S., Benalil, A. & Laferrière, C. The synthesis of functionalized cyclodextrins as scaffolds and templates for molecular diversity, catalysis, and inclusion phenomena. J. Org. Chem. 60, 4786–4797 (1995).

    Article  CAS  Google Scholar 

  18. Grachev, M. K. et al. Amphiphilic α-cyclodextrin derivatives containing residues of pharmacologically important acids. Russ. Chem. Bull. 61, 181–187 (2012).

    Article  CAS  Google Scholar 

  19. Edunov, A. V. et al. α-Cyclodextrin compounds containing benzoic, acetylsalicylic, and 2-(4-isobutylphenyl)propionic acid residues. Russ. J. Org. Chem. 47, 981–988 (2011).

    Article  CAS  Google Scholar 

  20. Takeo, K.’I., Uemura, K. & Mitoh, H. Derivatives of α-cyclodextrin and the synthesis of 6-O-α-d-glucopyranosyl-α-cyclodextrin. J. Carbohydr. Chem. 7, 293–308 (1988).

    Article  CAS  Google Scholar 

  21. Xia, L. & Lowary, T. L. Regioselective polymethylation of α-(1→4)-linked mannopyranose oligosaccharides. J. Org. Chem. 78, 2863–2880 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Asahara, C., Iwamoto, T., Akashi, M., Shigemitsu, H. & Kida, T. Effective guest inclusion by a 6‐O‐modified β‐cyclodextrin dimer in organic solvents. ChemPlusChem 83, 868–873 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Aime, S., Gianolio, E., Robaldo, B., Barge, A. & Cravotto, G. Improved syntheses of bis(β-cyclodextrin) derivatives, new carriers for gadolinium complexes. Org. Biomol. Chem. 4, 1124–1130 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Ikeda, H., Matsushisa, A. & Ueno, A. Efficient transport of saccharides through a liquid membrane mediated by a cyclodextrin dimer. Chem. Eur. J. 9, 4907–4910 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Pregel, M. J. & Buncel, E. Cyclodextrin-based enzyme models. Part 1. Synthesis of a tosylate and an epoxide derived from heptakis(6-O-tert-butyldimethylsilyl)-β-cyclodextrin and their characterization using 2D NMR techniques. An improved route to cyclodextrins functionalized on the secondary face. Can. J. Chem. 69, 130–137 (1991).

    Article  CAS  Google Scholar 

  26. Venema, F. et al. Synthesis and binding properties of novel cyclodextrin dimers. Tetrahedron Lett. 35, 1773–1776 (1994).

    Article  CAS  Google Scholar 

  27. van Dienst, E. et al. Selective functionalization and flexible coupling of cyclodextrins at the secondary hydroxyl face. J. Org. Chem. 60, 6537–6545 (1995).

    Article  Google Scholar 

  28. Mulder, A. et al. Photocontrolled release and uptake of a porphyrin guest by dithienylethene-tethered β-cyclodextrin host dimers. Chem. Eur. J. 10, 1114–1123 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Nelissen, H. F. M., Feiters, M. C. & Nolte, R. J. M. Synthesis and self-inclusion of bipyridine-spaced cyclodextrin dimers. J. Org. Chem. 67, 5901–5906 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. de Jong, M. R., Engbersen, J. F. J., Huskens, J. & Reinhoudt, D. N. Cyclodextrin dimers as receptor molecules for steroid sensors. Chem. Eur. J. 6, 4034–4040 (2000).

    Article  PubMed  Google Scholar 

  31. Balbuena, P. et al. o‑Xylylene protecting group in carbohydrate chemistry: application to the regioselective protection of a single vic-diol segment in cyclodextrins. J. Org. Chem. 78, 1390–1403 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Ward, S. et al. Investigation into the role of the hydrogen bonding network in cyclodextrin-based self-assembling mesophases. J. Mat. Chem. C 2, 4928–4936 (2014).

    Article  CAS  Google Scholar 

  33. Fulton, D. A. & Stoddart, J. F. Synthesis of cyclodextrin-based carbohydrate clusters by photoaddition reactions. J. Org. Chem. 66, 8309–8319 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Byrne, C., Sallas, F., Rai, D. K., Ogier, J. & Darcy, R. Poly-6-cationic amphiphilic cyclodextrins designed for gene delivery. Org. Biomol. Chem. 7, 3763–3771 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Bálint, M. et al. Synthesis of the chiral selector heptakis(6‐O‐methyl)‐β‐cyclodextrin by phase‐transfer catalysis and hydrazine‐mediated transfer‐hydrogenation. Electrophoresis 40, 1941–1950 (2019).

    PubMed  Google Scholar 

  36. Durmaz, Y. Y., Lin, Y.-L. & ElSayed, M. E. H. Development of degradable, pH-sensitive star vectors for enhancing the cytoplasmic delivery of nucleic acids. Adv. Funct. Mater. 23, 3885–3895 (2013).

    Article  CAS  Google Scholar 

  37. O’Mahony, A. M. et al. A click chemistry route to 2-functionalised PEGylated and cationic β-cyclodextrins: co-formulation opportunities for siRNA delivery. Org. Biomol. Chem. 10, 4954–4960 (2012).

    Article  PubMed  Google Scholar 

  38. Kudryatseva, N. A., Kurochkina, G. I., Grachev, M. K. & Nifant’ev, E. E. Phosphorylation of per-6-O-(tert-butyl)(dimethyl)silyl-β-cyclodextrin with diethyl phosphorochloridite. Russ. J. Gen. Chem. 75, 1678–1679 (2006).

    Article  Google Scholar 

  39. Wang, X. et al. Synthesis of a β-cyclodextrin derivate and its molecular recognition behavior on modified glassy carbon electrode by diazotization. Tetrahedron 66, 7815–7820 (2010).

    Article  CAS  Google Scholar 

  40. Xie, H., Li, H., Lai, X., Wu, W. & Zeng, X. Synthesis and antioxidative properties of a star-shaped macromolecular antioxidant based on β-cyclodextrin. Mater. Lett. 151, 72–74 (2015).

    Article  CAS  Google Scholar 

  41. Gou, P.-F., Zhu, W.-P., Xu, N. & Shem, Z.-Q. Synthesis and characterization of well-defined cyclodextrin-centered seven-arm star poly(ε-caprolactone)s and amphiphilic star poly(ε-caprolactone-b-ethylene glycol)s. J. Polym. Sci. Pol. Chem. 46, 6455–6465 (2008).

    Article  CAS  Google Scholar 

  42. Uccello-Barretta, G., Sicoli, G., Balzano, F. & Salvadori, P. NMR spectroscopy: a powerful tool for detecting the conformational features of symmetrical persubstituted mixed cyclomaltoheptaoses (β-cyclodextrins). Carbohydr. Res. 340, 271–281 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Toomari, Y., Namazi, H. & Entezami, A. A. Fabrication of biodendrimeric β-cyclodextrin via click reaction with potency of anticancer drug delivery agent. Int. J. Biol. Macromol. 79, 883–893 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, P., Ling, C.-C., Coleman, A. W., Parrot-Lopez, H. & Galons, H. Formation of amphiphilic cyclodextrins via hydrophobic esterification at the secondary hydroxyl face. Tetrahedron Lett. 23, 2769–2770 (1991).

    Article  Google Scholar 

  45. Idriss, H. et al. Effect of the second coordination sphere on new contrast agents based on cyclodextrin scaffolds for MRI signals. RSC Adv. 3, 4531–4534 (2013).

    Article  CAS  Google Scholar 

  46. Badi, N. et al. β-Cyclodextrins modified by alkyl and poly(ethylene oxide) chains: a novel class of mass transfer additives for aqueous organometallic catalysis. J. Mol. Catal. A-Chem. 318, 8–14 (2010).

    Article  CAS  Google Scholar 

  47. Biscotti, A. et al. MRI probes based on C6-peracetate β-cyclodextrins: synthesis, gadolinium complexation and in vivo relaxivity studies. Polyhedron 148, 32–43 (2018).

    Article  CAS  Google Scholar 

  48. Malanga, M. et al. Synthesis, analytical characterization and capillary electrophoretic use of the single-isomer heptakis-(6-O-sulfobutyl)-beta-cyclodextrin. J. Chromatogr. A 1514, 127–133 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Khan, A. R., Barton, L. & D’Souza, V. T. Epoxides of the secondary side of cyclodextrins. J. Org. Chem. 61, 8301–8303 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Kelly, D. R. & Mish’al, A. K. Synthesis of the first per(3-deoxy)-cyclooligosaccharide: hepta(manno-3-deoxy-6-O-t-butyldimethylsilyl)-β-cyclodextrin. Tetrahedron: Asymmetry 10, 3627–3648 (1999).

    Article  CAS  Google Scholar 

  51. Nogami, Y. et al. A new synthetic strategy of cyclooligosaccharides: cyclodextrin-derived cycloaltrins made up from α(1→4)-linked altropyranoses. J. Incl. Phenom. Mol. Recognit. Chem. 25, 57–60 (1996).

    Article  CAS  Google Scholar 

  52. Casas-Solvas, J. M., Ortega-Caballero, F., Giménez-Martínez, J. J. & Vargas-Berenguel, A. Synthesis of nitrogen-functionalized β-cycloaltrins. J. Org. Chem. 69, 8942–8945 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Fejős, I. et al. Characterization of a single‐isomer carboxymethyl‐beta‐cyclodextrin in chiral capillary electrophoresis. Electrophoresis 38, 1869–1877 (2017).

    Article  PubMed  Google Scholar 

  54. Alker, D. et al. Per-6-bromo-per-2,3-dimethyl-β-cyclodextrin. Tetrahedron Lett. 35, 9091–9094 (1994).

    Article  CAS  Google Scholar 

  55. Ashton, P. R., Königer, R., Stoddart, J. F., Alker, D. & Harding, V. D. Amino acid derivatives of β-cyclodextrin. J. Org. Chem. 61, 903–908 (1996).

    Article  CAS  Google Scholar 

  56. Carofiglio, T., Cordioli, M., Fornasier, R., Jicsinszky, L. & Tonellato, U. Synthesis of 6I-amino-6I-deoxy-2I-VII,3I-VII-tetradeca-O-methylcyclomaltoheptaose. Carbohydr. Res. 339, 1361–1366 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Takahisa, E. & Engel, K.-H. 2,3-Di-O-methoxymethyl-6-O-tert-butyldimethylsilyl-β-cyclodextrin, a useful stationary phase for gas chromatographic separation of enantiomers. J. Chromatogr. A 1076, 148–154 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Gou, P.-F., Zhu, W.-P. & Shen, Z.-Q. Synthesis, self-assembly, and drug-loading capacity of well-defined cyclodextrin-centered drug-conjugated amphiphilic A14B7 miktoarm star copolymers based on poly(ε-caprolactone) and poly(ethylene glycol). Biomacromolecules 11, 934–943 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Ward, S. & Ling, C.-C. Efficient and versatile modification of the secondary face of cyclodextrins through copper-catalyzed Huisgen 1,3-dipolar cycloaddition. Eur. J. Org. Chem. 2011, 4853–4861 (2011).

    CAS  Google Scholar 

  60. Champagne, P.-L., Ester, D., Ward, S., Williams, V. E. & Ling, C.-C. First family of amphiphilic cyclodextrin liquid crystals driven by dipole-dipole interactions. ChemPlusChem 82, 423–432 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Cutrone, G. et al. Design of engineered cyclodextrin derivatives for spontaneous coating of highly porous metal-organic framework nanoparticles in aqueous media. Nanomaterials 9, 1103 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  62. Cravotto, G., Palmisano, G., Panza, L. & Tagliapietra, S. Synthesis of selectively permodified γ–cyclodextrins. A new set of chiral stationary phases in capillary GC. J. Carbohydr. Chem. 19, 1235–1245 (2000).

    Article  CAS  Google Scholar 

  63. Benkovics, G. et al. Single-isomer carboxymethyl-γ-cyclodextrin as chiral resolving agent for capillary electrophoresis. J. Chromatogr. A 1467, 445–453 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Takahisa, E. & Engel, K.-H. 2,3-Di-O-methoxymethyl-6-O-tert-butyldimethylsilyl-γ-cyclodextrin: a new class of cyclodextrin derivatives for gas chromatographic separation of enantiomers. J. Chromatogr. A 1063, 181–192 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Yang, C., Yuan, D.-Q., Nogami, Y. & Fujita, K. Per(3-deoxy)-γ-cyclomannin: a non-glucose cyclooligosaccharide featuring inclusion properties. Tetrahedron Lett. 44, 4641–4644 (2003).

    Article  CAS  Google Scholar 

  66. Venema, F. et al. Synthesis, conformation, and binding properties of cyclodextrin homo- and heterodimers connected through their secondary sides. Chem. Eur. J. 4, 2237–2250 (1998).

    Article  CAS  Google Scholar 

  67. Grachev, M. K., Edunov, A. V., Kurochkina, G. I., Levina, I. I. & Nifant’ev, E. E. Acetylation of secondary hydroxy groups of α- and β-cyclodextrine silyl derivatives. Russ. J. Gen. Chem. 81, 322–329 (2011).

    Article  CAS  Google Scholar 

  68. Wazynska, M., Temeriusz, A., Chmurski, K., Bilewicz, R. & Jurczak, J. Synthesis and monolayer behavior of amphiphilic per(2,3-di-O-alkyl)-α- and β-cyclodextrins and hexakis(6-deoxy-6-thio-2,3-di-O-pentyl)-α-cyclodextrin at an air–water interface. Tetrahedron Lett. 41, 9119–9123 (2000).

    Article  CAS  Google Scholar 

  69. Gubica, T., Winnicka, E., Temeriusz, A. & Kańska, M. The influence of selected O-alkyl derivatives of cyclodextrins on the enzymatic decomposition of l-tryptophan by l-tryptophan indole-lyase. Carbohydr. Res. 344, 304–310 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Karube, N. & Ito, K. Anion binding properties of 2,3-O-dibenzyl-α- and β-cyclodextrin derivatives. Lett. Org. Chem. 11, 719–724 (2014).

    Article  CAS  Google Scholar 

  71. Uccello-Barretta, C., Ferri, L., Balzano, F. & Salvadori, P. Partially versus exhaustively carbamoylated cyclodextrins: NMR investigation on enantiodiscriminating capabilities in solution. Eur. J. Org. Chem. 2003, 1741–1748 (2003).

    Article  Google Scholar 

  72. Aime, S. et al. New cyclodextrin dimers and trimers capable of forming supramolecular adducts with shape-specific ligands. Org. Biomol. Chem. 7, 370–379 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Zhang, P. & Coleman, A. W. Synthetic route for selective modification of the secondary hydroxyl face of cyclodextrins. Supramol. Chem. 2, 255–263 (1993).

    Article  CAS  Google Scholar 

  74. Dubes, A., Degobert, G., Fessi, H. & Parrot-Lopez, H. Synthesis and characterisation of sulfated amphiphilic α-, β- and γ-cyclodextrins: application to the complexation of acyclovir. Carbohydr. Res. 338, 2185–2193 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Meppen, M., Wang, Y., Cheon, H.-W. & Kishi, Y. Synthetic 6-O-methylglucose-containing polysaccharides (sMGPs): design and synthesis. J. Org. Chem. 72, 1941–1950 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sukegawa, T. et al. Erythrocyte-like liposomes prepared by means of amphiphilic cyclodextrin sulfates. Chem. Commun. 2002, 430-431 (2002).

  77. Tarver, G. J. et al. 2-O-Substituted cyclodextrins as reversal agents for the neuromuscular blocker rocuronium bromide. Bioorg. Med. Chem. 10, 1819–1827 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Takeo, K.’I., Mitoh, H. & Uemura, K. Selective chemical modification of cyclomalto-oligosaccharides via tert-butyldimethylsilylation. Carbohydr. Res. 187, 203–221 (1989).

    Article  CAS  Google Scholar 

  79. Fügedi, P. Synthesis of heptakis(6-O-tert-butyldimethylsilyl)cyclomaltoheptaose and octakis(6-O-tert-butyldimethylsilyl)cyclomalto-octaose. Carbohydr. Res. 192, 366–369 (1989).

    Article  Google Scholar 

  80. Badi, N., Jarroux, N. & Guégan, P. Synthesis of per-2,3-di-O-heptyl-β and γ-cyclodextrins: a new kind of amphiphilic molecules bearing hydrophobic parts. Tetrahedron Lett. 47, 8925–8927 (2006).

    Article  CAS  Google Scholar 

  81. Casas-Solvas, J. M., Vargas-Berenguel, A. & Malanga, M. Synthesis of heptakis(6-O-tert-butyldimethylsilyl)ciclomaltoheptaose. in Carbohydrate Chemistry: Proven Synthetic Methods Vol. 4 (eds. Vogel, C. & Murphy, P.) 26.205–26.211 (CRC Press, 2017).

  82. Khan, A. R., Forgo, P., Stine, K. J. & D’Souza, V. T. Methods for selective modifications of cyclodextrins. Chem. Rev. 98, 1977–1996 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. Pereva, S., Nikolova, V., Angelova, S., Spassov, T. & Dudev, T. Water inside β-cyclodextrin cavity: amount, stability and mechanism of binding. Beilstein J. Org. Chem. 15, 1592–1600 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gupta, G. R. et al. Analytical estimation of water contents, specific heat capacity and thermal profiles associated with enzymatic model compound β-cyclodextrin. Curr. Sci. 114, 2525–2529 (2018).

    Article  CAS  Google Scholar 

  85. Perrin, D. D. & Armarego, W. F. L. Purification of Laboratory Chemicals 3rd edn (Pergamon Press, 1989).

  86. Cserháti, T. & Forgács, E. Introduction to techniques and instrumentation. in Practical Thin-Layer Chromatography: A Multidisciplinary Approach (eds Fried, B. & Sherma, J.) 14 (CRC Press, 1996).

  87. Gmehling, J. et al. Azeotropic data for binary mixtures. in CRC Handbook of Chemistry and Physics 85th edn (Lide, D. R., ed) 6-194 (CRC Press, 2005).

  88. Li, M. et al. Phase behavior and thermodynamic model parameters in simulations of extractive distillation for azeotrope separation. Sci. Rep. 7, 9497 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the Spanish Ministry of Economy and Competitiveness for funding (CTQ2017-90050-R). S.B. is grateful for financial support from the János Bolyai Research Scholarship of the Hungarian Academy of Sciences and from the Bolyai+ New National Excellence Program (grant no. ÚNKP-19-4-SE-53) of the Ministry of Human Capacities.

Author information

Authors and Affiliations

Authors

Contributions

M.M. and J.M.C.-S. designed and optimized the synthesis strategies and the purification steps. G.B., M.M., and G.C. performed the syntheses. S.B., M.M., and J.M.C.-S. performed the NMR experiments and elucidated the spectra. J.M.C.-S. wrote the manuscript. G.B., M.M., and J.M.C.-S. prepared the Supplementary Information. All the authors reviewed the manuscript and added comments and suggestions at all stages. A.V.-B. supervised the project and provided conceptual advice.

Corresponding author

Correspondence to Juan Manuel Casas-Solvas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Éric Monflier and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Cutrone, G. et al. Nanomaterials 9, 1103 (2019): https://doi.org/10.3390/nano9081103.

Casas-Solvas, J. M., Vargas-Berenguel, A. & Malanga, M. in Carbohydrate Chemistry: Proven Synthetic Methods Vol. 4 (eds Vogel, C. & Murphy, P.) 26.205–26.211: https://doi.org/10.1201/9781315120300-26.

Supplementary information

Supplementary Information

Supplementary Information and Supplementary Figs. 1–57.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benkovics, G., Malanga, M., Cutrone, G. et al. Facile synthesis of per(6-O-tert-butyldimethylsilyl)-α-, β-, and γ-cyclodextrin as protected intermediates for the functionalization of the secondary face of the macrocycles. Nat Protoc 16, 965–987 (2021). https://doi.org/10.1038/s41596-020-00443-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-020-00443-8

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing