Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

High-speed super-resolution imaging of rotationally symmetric structures using SPEED microscopy and 2D-to-3D transformation

Abstract

Various super-resolution imaging techniques have been developed to break the diffraction-limited resolution of light microscopy. However, it still remains challenging to obtain three-dimensional (3D) super-resolution information of structures and dynamic processes in live cells at high speed. We recently developed high-speed single-point edge-excitation sub-diffraction (SPEED) microscopy and its two-dimensional (2D)-to-3D transformation algorithm to provide an effective approach to achieving 3D sub-diffraction-limit information in subcellular structures and organelles that have rotational symmetry. In contrast to most other 3D super-resolution microscopy or 3D particle-tracking microscopy approaches, SPEED microscopy does not depend on complex optical components and can be implemented onto a standard inverted epifluorescence microscope. SPEED microscopy is specifically designed to obtain 2D spatial locations of individual immobile or moving fluorescent molecules inside sub-micrometer biological channels or cavities at high spatiotemporal resolution. After data collection, post-localization 2D-to-3D transformation is applied to obtain 3D super-resolution structural and dynamic information. The complete protocol, including cell culture and sample preparation (6–7 d), SPEED imaging (4–5 h), data analysis and validation through simulation (5–13 h), takes ~9 d to complete.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A schematic of excitation optical paths for both vertical and inclined illumination.
Fig. 2: 3D information derived from 2D single-molecule data using a 2D-to-3D transformation.
Fig. 3: Representative data from SPEED microscopy experiments.
Fig. 4: Representatives of 3D probability density maps in three rotationally symmetric systems.
Fig. 5: Schematic workflow for SPEED microscopy.
Fig. 6: Optical paths in the SPEED microscope and other microscopes.
Fig. 7: Validation of the reproducibility of SPEED microscopy and its 2D-to-3D histogram.
Fig. 8: A schematic showing data normalization and 2D-to-3D transformation.

Similar content being viewed by others

Data availability

The data used to generate example data figures can be found on our lab’s GitHub repository: https://github.com/YangLab-Temple/Data.

Code availability

The code used in this work is available at https://github.com/YangLab-Temple/Master under the GNU General Public License v3.0. Specifically, the code for the reproducibility rate can be found at https://github.com/YangLab-Temple/Master/tree/master/reproducibility%20rate.

References

  1. Abbe, E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für Mikroskopische Anatomie 9, 413–468 (1873).

    Google Scholar 

  2. Mockl, L., Lamb, D. C. & Brauchle, C. Super-resolved fluorescence microscopy: Nobel Prize in Chemistry 2014 for Eric Betzig, Stefan Hell, and William E. Moerner. Angew. Chem. Int. Ed. Engl. 53, 13972–13977 (2014).

    PubMed  Google Scholar 

  3. Schermelleh, L., Heintzmann, R. & Leonhardt, H. A guide to super-resolution fluorescence microscopy. J. Cell Biol. 190, 165–175 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Schermelleh, L. et al. Super-resolution microscopy demystified. Nat. Cell Biol. 21, 72–84 (2019).

    CAS  PubMed  Google Scholar 

  5. Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–796 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Shroff, H., Galbraith, C. G., Galbraith, J. A. & Betzig, E. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat. Methods 5, 417–423 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Schnitzbauer, J., Strauss, M. T., Schlichthaerle, T., Schueder, F. & Jungmann, R. Super-resolution microscopy with DNA-PAINT. Nat. Protoc. 12, 1198–1228 (2017).

    CAS  PubMed  Google Scholar 

  8. Kner, P., Chhun, B. B., Griffis, E. R., Winoto, L. & Gustafsson, M. G. L. Super-resolution video microscopy of live cells by structured illumination. Nat. Methods 6, 339–342 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

    CAS  PubMed  Google Scholar 

  10. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    CAS  PubMed  Google Scholar 

  11. Hess, S. T., Girirajan, T. P. & Mason, M. D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Babcock, H., Sigal, Y. M. & Zhuang, X. A high-density 3D localization algorithm for stochastic optical reconstruction microscopy. Opt. Nanoscopy https://doi.org/10.1186/2192-2853-1-6 (2012).

  13. von Diezmann, A., Shechtman, Y. & Moerner, W. E. Three-dimensional localization of single molecules for super-resolution imaging and single-particle tracking. Chem. Rev. 117, 7244–7275 (2017).

    Google Scholar 

  14. Fuchs, J. et al. A photoactivatable marker protein for pulse-chase imaging with superresolution. Nat. Methods 7, 627–630 (2010).

    CAS  PubMed  Google Scholar 

  15. Zhu, L., Zhang, W., Elnatan, D. & Huang, B. Faster STORM using compressed sensing. Nat. Methods 9, 721–723 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Manley, S. et al. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods 5, 155–157 (2008).

    CAS  PubMed  Google Scholar 

  17. Hoze, N. et al. Heterogeneity of AMPA receptor trafficking and molecular interactions revealed by superresolution analysis of live cell imaging. Proc. Natl Acad. Sci. USA 109, 17052–17057 (2012).

    CAS  PubMed  Google Scholar 

  18. Yang, T. T., Tran, M. N. T., Chong, W. M., Huang, C. E. & Liao, J. C. Single-particle tracking localization microscopy reveals nonaxonemal dynamics of intraflagellar transport proteins at the base of mammalian primary cilia. Mol. Biol. Cell 30, 828–837 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Izeddin, I. et al. Wavelet analysis for single molecule localization microscopy. Opt. Express 20, 2081–2095 (2012).

    CAS  PubMed  Google Scholar 

  20. Gustafsson, M. G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198, 82–87 (2000).

    CAS  PubMed  Google Scholar 

  21. Heintzmann, R. & Cremer, C. G. in Optical Biopsies and Microscopic Techniques III 185–196 (International Society for Optics and Photonics, 1999).

  22. Gustafsson, M. G. et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J. 94, 4957–4970 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Schermelleh, L. et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320, 1332–1336 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Heintzmann, R. & Ficz, G. Breaking the resolution limit in light microscopy. Brief. Funct. Genomic. Proteomic. 5, 289–301 (2006).

    PubMed  Google Scholar 

  25. Vicidomini, G., Bianchini, P. & Diaspro, A. STED super-resolved microscopy. Nat. Methods 15, 173–182 (2018).

    CAS  PubMed  Google Scholar 

  26. Westphal, V., Lauterbach, M. A., Di Nicola, A. & Hell, S. W. Dynamic far-field fluorescence nanoscopy. N. J. Phys. 9, 435–435 (2007).

    Google Scholar 

  27. Willig, K., Keller, J., Bossi, M. & Hell, S. W. STED microscopy resolves nanoparticle assemblies. N. J. Phys. 8, 106 (2006).

    Google Scholar 

  28. Willig, K. I., Rizzoli, S. O., Westphal, V., Jahn, R. & Hell, S. W. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440, 935–939 (2006).

    CAS  PubMed  Google Scholar 

  29. Dyba, M. & Hell, S. W. Focal spots of size lambda/23 open up far-field florescence microscopy at 33 nm axial resolution. Phys. Rev. Lett. 88, 163901 (2002).

    PubMed  Google Scholar 

  30. Dyba, M., Jakobs, S. & Hell, S. W. Immunofluorescence stimulated emission depletion microscopy. Nat. Biotechnol. 21, 1303–1304 (2003).

    CAS  PubMed  Google Scholar 

  31. Dyba, M., Keller, J. & Hell, S. W. Phase filter enhanced STED-4Pi fluorescence microscopy: theory and experiment. N. J. Phys. 7, 134–134 (2005).

    Google Scholar 

  32. Klar, T. A., Jakobs, S., Dyba, M., Egner, A. & Hell, S. W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl Acad. Sci. USA 97, 8206–8210 (2000).

    CAS  PubMed  Google Scholar 

  33. Sidenstein, S. C. et al. Multicolour multilevel STED nanoscopy of actin/spectrin organization at synapses. Sci. Rep. 6, 26725 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kilian, N. et al. Assessing photodamage in live-cell STED microscopy. Nat. Methods 15, 755–756 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lauterbach, M. A. et al. Comparing video-rate STED nanoscopy and confocal microscopy of living neurons. J. Biophotonics 3, 417–424 (2010).

    PubMed  Google Scholar 

  36. Pellett, P. A. et al. Two-color STED microscopy in living cells. Biomed. Opt. Express 2, 2364–2371 (2011).

    PubMed  PubMed Central  Google Scholar 

  37. Gwosch, K. C. et al. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat. Methods 17, 217–224 (2020).

    CAS  PubMed  Google Scholar 

  38. Ma, J. & Yang, W. Three-dimensional distribution of transient interactions in the nuclear pore complex obtained from single-molecule snapshots. Proc. Natl Acad. Sci. USA 107, 7305–7310 (2010).

    CAS  PubMed  Google Scholar 

  39. Goryaynov, A., Ma, J. & Yang, W. Single-molecule studies of nucleocytoplasmic transport: from one dimension to three dimensions. Integr. Biol. 4, 10–21 (2012).

    CAS  Google Scholar 

  40. Goryaynov, A. & Yang, W. Role of molecular charge in nucleocytoplasmic transport. PLoS ONE 9, e88792 (2014).

  41. Junod, S. L., Kelich, J. M., Ma, J. & Yang, W. Nucleocytoplasmic transport of intrinsically disordered proteins studied by high-speed super-resolution microscopy. Protein Sci. 29, 1459–1472 (2020).

  42. Luo, W. et al. Axonemal lumen dominates cytosolic protein diffusion inside the primary cilium. Sci. Rep. 7, 1–11 (2017).

    Google Scholar 

  43. Ma, J., Goryaynov, A., Sarma, A. & Yang, W. Self-regulated viscous channel in the nuclear pore complex. Proc. Natl Acad. Sci. USA 109, 7326–7331 (2012).

    CAS  PubMed  Google Scholar 

  44. Ma, J., Goryaynov, A. & Yang, W. Super-resolution 3D tomography of interactions and competition in the nuclear pore complex. Nat. Struct. Mol. Biol. 23, 239–247 (2016).

    PubMed Central  Google Scholar 

  45. Ma, J. et al. High-resolution three-dimensional mapping of mRNA export through the nuclear pore. Nat. Commun. 4, 1–9 (2013).

    Google Scholar 

  46. Mudumbi, K. C. et al. Nucleoplasmic signals promote directed transmembrane protein import simultaneously via multiple channels of nuclear pores. Nat. Commun. 11, 1–14 (2020).

    Google Scholar 

  47. Westphal, V. et al. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320, 246–249 (2008).

    CAS  PubMed  Google Scholar 

  48. Li, Y., Luo, W. & Yang, W. Nuclear transport and accumulation of smad proteins studied by single-molecule microscopy. Biophys. J. 114, 2243–2251 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Sun, C., Yang, W., Tu, L.-C. & Musser, S. M. Single-molecule measurements of importin α/cargo complex dissociation at the nuclear pore. Proc. Natl Acad. Sci. USA 105, 8613–8618 (2008).

    CAS  PubMed  Google Scholar 

  50. Yang, W. & Musser, S. M. Visualizing single molecules interacting with nuclear pore complexes by narrow-field epifluorescence microscopy. Methods 39, 316–328 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Solovei, I. et al. LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell 152, 584–598 (2013).

    CAS  PubMed  Google Scholar 

  52. Mudumbi, K. C., Yang, W., Ma, J. & Schirmer, E. C. Single-point frap distinguishes inner and outer nuclear membrane protein distribution. Biophys. J. 110, 596a (2016).

    Google Scholar 

  53. Daigle, N. et al. Nuclear pore complexes form immobile networks and have a very low turnover in live mammalian cells. J. Cell Biol. 154, 71–84 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Feldherr, C. M., Kallenbach, E. & Schultz, N. Movement of a karyophilic protein through the nuclear pores of oocytes. J. Cell Biol. 99, 2216–2222 (1984).

    CAS  PubMed  Google Scholar 

  55. Kubitscheck, U., Wedekind, P., Zeidler, O., Grote, M. & Peters, R. Single nuclear pores visualized by confocal microscopy and image processing. Biophys. J. 70, 2067–2077 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Tokunaga, M., Imamoto, N. & Sakata-Sogawa, K. Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat. Methods 5, 159–161 (2008).

    CAS  PubMed  Google Scholar 

  57. Mudumbi, K. C., Schirmer, E. C. & Yang, W. Single-point single-molecule FRAP distinguishes inner and outer nuclear membrane protein distribution. Nat. Commun. 7, 1–6 (2016).

    Google Scholar 

  58. Tingey, M., Mudumbi, K. C., Schirmer, E. C. & Yang, W. Casting a wider net: differentiating between inner nuclear envelope and outer nuclear envelope transmembrane proteins. Int. J. Mol. Sci. 20, 5248 (2019).

  59. Ott, C. & Lippincott-Schwartz, J. Visualization of live primary cilia dynamics using fluorescence microscopy. Curr. Protoc. Cell Biol. Chapter 4, Unit 4 26 (2012).

    PubMed  Google Scholar 

  60. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS  Google Scholar 

  61. Grünwald, D. & Singer, R. H. In vivo imaging of labelled endogenous β-actin mRNA during nucleocytoplasmic transport. Nature 467, 604–607 (2010).

    PubMed  PubMed Central  Google Scholar 

  62. Herbert, A. Single Molecule Light Microscopy ImageJ Plugins. http://www.sussex.ac.uk/gdsc/intranet/pdfs/SMLM.pdf (2014).

  63. Punge, A. et al. 3D reconstruction of high-resolution STED microscope images. Microsc. Res. Tech. 71, 644–650 (2008).

    PubMed  Google Scholar 

  64. Banterle, N., Bui, K. H., Lemke, E. A. & Beck, M. Fourier ring correlation as a resolution criterion for super-resolution microscopy. J. Struct. Biol. 183, 363–367 (2013).

    CAS  PubMed  Google Scholar 

  65. Nieuwenhuizen, R. P. et al. Measuring image resolution in optical nanoscopy. Nat. Methods 10, 557–562 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Giannone, G. et al. Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density. Biophys. J. 99, 1303–1310 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Agasti, S. S. et al. DNA-barcoded labeling probes for highly multiplexed Exchange-PAINT imaging. Chem. Sci. 8, 3080–3091 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Bates, M., Blosser, T. R. & Zhuang, X. Short-range spectroscopic ruler based on a single-molecule optical switch. Phys. Rev. Lett. 94, 108101 (2005).

    PubMed  PubMed Central  Google Scholar 

  69. Bates, M. et al. in Single Molecule Spectroscopy in Chemistry, Physics and Biology 399–415 (Springer, 2010).

  70. Gordon, M. P., Ha, T. & Selvin, P. R. Single-molecule high-resolution imaging with photobleaching. Proc. Natl Acad. Sci. USA 101, 6462–6465 (2004).

    CAS  PubMed  Google Scholar 

  71. Heilemann, M., Margeat, E., Kasper, R., Sauer, M. & Tinnefeld, P. Carbocyanine dyes as efficient reversible single-molecule optical switch. J. Am. Chem. Soc. 127, 3801–3806 (2005).

    CAS  PubMed  Google Scholar 

  72. Kubitscheck, U. et al. Nuclear transport of single molecules: dwell times at the nuclear pore complex. J. Cell Biol. 168, 233–243 (2005).

    PubMed  PubMed Central  Google Scholar 

  73. Ober, R. J., Ram, S. & Ward, E. S. Localization accuracy in single-molecule microscopy. Biophys. J. 86, 1185–1200 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Qu, X., Wu, D., Mets, L. & Scherer, N. F. Nanometer-localized multiple single-molecule fluorescence microscopy. Proc. Natl Acad. Sci. USA 101, 11298–11303 (2004).

    CAS  PubMed  Google Scholar 

  75. Owen, D. M., Williamson, D., Magenau, A., Rossy, J. & Gaus, K. in Methods in Enzymology Vol. 504 221–235 (Elsevier, 2012).

  76. York, A. G., Ghitani, A., Vaziri, A., Davidson, M. W. & Shroff, H. Confined activation and subdiffractive localization enables whole-cell PALM with genetically expressed probes. Nat. Methods 8, 327–333 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Temprine, K., York, A. G. & Shroff, H. Three-dimensional photoactivated localization microscopy with genetically expressed probes. Methods Mol. Biol. 1251, 231–261 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Sharonov, A. & Hochstrasser, R. M. Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc. Natl Acad. Sci. USA 103, 18911–18916 (2006).

    CAS  PubMed  Google Scholar 

  79. Jungmann, R. et al. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nat. Methods 11, 313–318 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Iinuma, R. et al. Polyhedra self-assembled from DNA tripods and characterized with 3D DNA-PAINT. Science 344, 65–69 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Schueder, F. et al. Multiplexed 3D super-resolution imaging of whole cells using spinning disk confocal microscopy and DNA-PAINT. Nat. Commun. 8, 1–9 (2017).

    CAS  Google Scholar 

  82. Lin, R., Clowsley, A. H., Lutz, T., Baddeley, D. & Soeller, C. 3D super-resolution microscopy performance and quantitative analysis assessment using DNA-PAINT and DNA origami test samples. Methods 174, 56–71 (2020).

    CAS  PubMed  Google Scholar 

  83. Strauss, S. et al. Modified aptamers enable quantitative sub-10-nm cellular DNA-PAINT imaging. Nat. Methods 15, 685–688 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Nieves, D. J., Gaus, K. & Baker, M. A. DNA-based super-resolution microscopy: DNA-PAINT. Genes 9, 621 (2018).

    PubMed Central  Google Scholar 

  85. Chung, E., Kim, D. & So, P. T. Extended resolution wide-field optical imaging: objective-launched standing-wave total internal reflection fluorescence microscopy. Opt. Lett. 31, 945–947 (2006).

    PubMed  Google Scholar 

  86. Richter, V., Piper, M., Wagner, M. & Schneckenburger, H. Increasing resolution in live cell microscopy by structured illumination (SIM). Appl. Sci. 9, 1188 (2019).

  87. Förster, R. et al. Simple structured illumination microscope setup with high acquisition speed by using a spatial light modulator. Opt. Express 22, 20663–20677 (2014).

    PubMed  Google Scholar 

  88. Strohl, F. & Kaminski, C. F. Speed limits of structured illumination microscopy. Opt. Lett. 42, 2511–2514 (2017).

    PubMed  Google Scholar 

  89. Schmidt, R. et al. Spherical nanosized focal spot unravels the interior of cells. Nat. Methods 5, 539–544 (2008).

    CAS  PubMed  Google Scholar 

  90. Hell, S. W. Toward fluorescence nanoscopy. Nat. Biotechnol. 21, 1347–1355 (2003).

    CAS  PubMed  Google Scholar 

  91. Manley, S., Gillette, J. M. & Lippincott-Schwartz, J. in Methods in Enzymology Vol. 475 109–120 (Elsevier, 2010).

  92. Subach, F. V., Patterson, G. H., Renz, M., Lippincott-Schwartz, J. & Verkhusha, V. V. Bright monomeric photoactivatable red fluorescent protein for two-color super-resolution sptPALM of live cells. J. Am. Chem. Soc. 132, 6481–6491 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Ruba, A., Luo, W., Kelich, J., Tingey, M. & Yang, W. 3D tracking-free approach for obtaining 3D super-resolution information in rotationally symmetric biostructures. J. Phys. Chem. B 123, 5107–5120 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge S. J. Junod for his assistance during the preparation of this manuscript. We also thank the many collaborators who have greatly helped us complete the research included in this manuscript: E. C. Schirmer (University of Edinburgh), K. J. Verhey (University of Michigan), N. G. Walter (University of Michigan) and R. Y. H. Lim (University of Basel). The project was supported by grants from the National Institutes of Health (GM094041, GM097037, GM116204 and GM22552 to W.Y.).

Author information

Authors and Affiliations

Authors

Contributions

Y.L., M.T. and A.R. produced the figures and tables and wrote and edited the manuscript. W.Y. edited the manuscript and provided appropriate guidance.

Corresponding author

Correspondence to Weidong Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Alex Clowsley, Christian Soeller and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Ma, J. & Yang, W. Proc. Natl Acad. Sci. USA 107, 7305–7310 (2010): https://doi.org/10.1073/pnas.0908269107

Ma, J. et al. Nat. Struct. Mol. Biol. 23, 239–247 (2016): https://doi.org/10.1038/nsmb.3174

Luo, W. et al. Sci. Rep. 7, 15793 (2017): https://doi.org/10.1038/s41598-017-16103-z

Supplementary information

Supplementary Information

Supplementary Fig. 1 and Supplementary Equations 1–4.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Tingey, M., Ruba, A. et al. High-speed super-resolution imaging of rotationally symmetric structures using SPEED microscopy and 2D-to-3D transformation. Nat Protoc 16, 532–560 (2021). https://doi.org/10.1038/s41596-020-00440-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-020-00440-x

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing