Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Responsive and activable nanomedicines for remodeling the tumor microenvironment

Abstract

Here we describe two protocols for the construction of responsive and activable nanomedicines that regulate the tumor microenvironment (TME). The TME is composed of all non-cellular and cellular components surrounding a tumor, including the surrounding blood vessels, immune cells, fibroblasts, signaling molecules, and extracellular matrix and has a crucial role in tumor initiation, growth, and metastasis. Owing to the relatively stable properties of the TME compared to tumor cells, which exhibit frequent genetic mutations and epigenetic changes, therapeutic strategies targeting the TME using multifunctional nanomedicines hold great potential for anti-tumor therapy. By regulating tumor-associated platelets and pancreatic stellate cells (PSCs), the two major players in the TME, we can effectively manipulate the physiological barriers for enhanced drug delivery and significantly improve the tumor penetration and therapeutic efficacy of chemotherapeutics. The preparation and characterization of the multifunctional nanoparticles takes ~10 h for tumor-associated platelet regulation and 16 h for PSC regulation. These nanoformulations can be readily applied to regulate other components in the TME to realize synergistic or additive anti-tumor activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of PLP-D-R and Au@PP/RA/siHSP47.
Fig. 2: Characterization and responsiveness of PLP-D-R.
Fig. 3: Local platelet depletion and in vivo anti-tumor activity.
Fig. 4: PET imaging and anti-tumor activity in vivo.
Fig. 5: Characterization of the Au@PP/RA/siRNA.
Fig. 6: In vitro cellular uptake, gene silencing and ECM inhibition.
Fig. 7: Stromal modulation and enhanced chemotherapeutic efficiency in vivo.

Similar content being viewed by others

Data availability

The main data discussed in this protocol are available in the supporting primary research papers https://doi.org/10.1038/s41551-017-0115-8 and https://doi.org/10.1038/s41467-018-05906-x. The raw datasets are too large to be publicly shared but are available for research purposes from the corresponding authors upon reasonable request.

References

  1. Paget, S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 8, 98–101 (1989).

    CAS  PubMed  Google Scholar 

  2. Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423–1437 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang, F. et al. Nanoparticles that reshape the tumor milieu create a therapeutic window for effective T-cell therapy in solid malignancies. Cancer Res. 78, 3718–3730 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Balkwill, F. R., Capasso, M. & Hagemann, T. The tumor microenvironment at a glance. J. Cell Sci. 125, 5591–5596 (2012).

    CAS  PubMed  Google Scholar 

  5. Ji, T. J., Zhao, Y., Ding, Y. P. & Nie, G. J. Using functional nanomaterials to target and regulate the tumor microenvironment: diagnostic and therapeutic applications. Adv. Mater. 25, 3508–3525 (2013).

    CAS  PubMed  Google Scholar 

  6. Belli, C. et al. Targeting the microenvironment in solid tumors. Cancer Treat. Rev. 65, 22–32 (2018).

    CAS  PubMed  Google Scholar 

  7. Yuan, Y., Jiang, Y. C., Sun, C. K. & Chen, Q. M. Role of the tumor microenvironment in tumor progression and the clinical applications (Review). Oncol. Rep. 35, 2499–2515 (2016).

    CAS  PubMed  Google Scholar 

  8. Pollard, J. W. Tumour-educated macrophages promote tumour progression and metastasis. Nat. Rev. Cancer 4, 71–78 (2004).

    CAS  PubMed  Google Scholar 

  9. Shimizu, K. et al. Immune suppression and reversal of the suppressive tumor microenvironment. Int. Immunol. 30, 445–454 (2018).

    CAS  PubMed  Google Scholar 

  10. Wu, T. & Dai, Y. Tumor microenvironment and therapeutic response. Cancer Lett. 387, 61–68 (2017).

    CAS  PubMed  Google Scholar 

  11. Diop-Frimpong, B. et al. Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors. Proc. Natl Acad. Sci. USA 108, 2909–2914 (2011).

    CAS  PubMed  Google Scholar 

  12. Niu, Y. M. et al. Size shrinkable drug delivery nanosystems and priming the tumor microenvironment for deep intratumoral penetration of nanoparticles. J. Control. Release 277, 35–47 (2018).

    CAS  PubMed  Google Scholar 

  13. Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, W. & Sun, X. Recent advances in developing novel anti-cancer drugs targeting tumor hypoxic and acidic microenvironments. Recent Pat. Anticancer Drug Discov. 13, 455–468 (2018).

    CAS  PubMed  Google Scholar 

  15. Sharma, A. et al. Hypoxia-targeted drug delivery. Chem. Soc. Rev. 48, 771–813 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kessenbrock, K., Plaks, V. & Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141, 52–67 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Mahzouni, P. & Sarmadi, T. An observational study on the expression of cyclooxygenase-2 in meningioma. Adv. Biomed. Res. 3, 211 (2014).

    PubMed  PubMed Central  Google Scholar 

  18. Lu, Y., Aimetti, A. A., Langer, R. & Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 2, 16075 (2017).

  19. Pelaz, B. et al. Diverse applications of nanomedicine. ACS Nano 11, 2313–2381 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Golombek, S. K. et al. Tumor targeting via EPR: strategies to enhance patient responses. Adv. Drug Deliv. Rev. 130, 17–38 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu, J. J., Chen, Q., Feng, L. Z. & Liu, Z. Nanomedicine for tumor microenvironment modulation and cancer treatment enhancement. Nano Today 21, 55–73 (2018).

    CAS  Google Scholar 

  22. Li, S. et al. Nanoparticle-mediated local depletion of tumour-associated platelets disrupts vascular barriers and augments drug accumulation in tumours. Nat. Biomed. Eng. 1, 667–679 (2017).

    CAS  PubMed  Google Scholar 

  23. Han, X. et al. Reversal of pancreatic desmoplasia by re-educating stellate cells with a tumour microenvironment-activated nanosystem. Nat. Commun. 9, 3390 (2018).

    PubMed  PubMed Central  Google Scholar 

  24. Ovais, M., Guo, M. & Chen, C. Tailoring nanomaterials for targeting tumor-associated macrophages. Adv. Mater. 31, e1808303 (2019).

    PubMed  Google Scholar 

  25. Miao, L. et al. Targeting tumor-associated fibroblasts for therapeutic delivery in desmoplastic tumors. Cancer Res. 77, 719–731 (2017).

    CAS  PubMed  Google Scholar 

  26. Ho-Tin-Noe, B., Demers, M. & Wagner, D. D. How platelets safeguard vascular integrity. J. Thromb. Haemost. 9, 56–65 (2011).

    PubMed  PubMed Central  Google Scholar 

  27. Neesse, A., Algul, H., Tuveson, D. A. & Gress, T. M. Stromal biology and therapy in pancreatic cancer: a changing paradigm. Gut 64, 1476–1484 (2015).

    CAS  PubMed  Google Scholar 

  28. Demers, M. et al. Increased efficacy of breast cancer chemotherapy in thrombocytopenic mice. Cancer Res. 71, 1540–1549 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, Y. L. et al. Inhibition of platelet function using liposomal nanoparticles blocks tumor metastasis. Theranostics 7, 1062–1071 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ozdemir, B. C. et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25, 719–734 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ho-Tin-Noe, B. et al. Platelet granule secretion continuously prevents intratumor hemorrhage. Cancer Res. 68, 6851–6858 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Volz, J. et al. Inhibition of platelet GPVI induces intratumor hemorrhage and increases efficacy of chemotherapy in mice. Blood 133, 2696–2706 (2019).

    CAS  PubMed  Google Scholar 

  33. Demers, M. & Wagner, D. D. Targeting platelet function to improve drug delivery. Oncoimmunology 1, 100–102 (2012).

    PubMed  PubMed Central  Google Scholar 

  34. Bergmeier, W. et al. Structural and functional characterization of the mouse von Willebrand factor receptor GPIb-IX with novel monoclonal antibodies. Blood 95, 886–893 (2000).

    CAS  PubMed  Google Scholar 

  35. Lee, Y. & Thompson, D. H. Stimuli-responsive liposomes for drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 9, 1450 (2017).

    Google Scholar 

  36. Meng, H. et al. Use of a lipid-coated mesoporous silica nanoparticle platform for synergistic gemcitabine and paclitaxel delivery to human pancreatic cancer in mice. ACS Nano 9, 3540–3557 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Dangi-Garimella, S. et al. Three-dimensional collagen I promotes gemcitabine resistance in pancreatic cancer through MT1-MMP-mediated expression of HMGA2. Cancer Res. 71, 1019–1028 (2011).

    CAS  PubMed  Google Scholar 

  38. Fan, Y., Li, C., Li, F. & Chen, D. pH-activated size reduction of large compound nanoparticles for in vivo nucleus-targeted drug delivery. Biomaterials 85, 30–39 (2016).

    CAS  PubMed  Google Scholar 

  39. Wang, H. et al. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials 32, 8281–8290 (2011).

    CAS  PubMed  Google Scholar 

  40. Elbakry, A. et al. Layer-by-layer assembled gold nanoparticles for siRNA delivery. Nano Lett. 9, 2059–2064 (2009).

    CAS  PubMed  Google Scholar 

  41. Ding, C., Gu, J., Qu, X. & Yang, Z. Preparation of multifunctional drug carrier for tumor-specific uptake and enhanced intracellular delivery through the conjugation of weak acid labile linker. Bioconjug. Chem. 20, 1163–1170 (2009).

    CAS  PubMed  Google Scholar 

  42. Long, A. H. et al. Reduction of MDSCs with all-trans retinoic acid improves CAR therapy efficacy for sarcomas. Cancer Immunol. Res. 4, 869–880 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Mirza, N. et al. All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res. 66, 9299–9307 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Song, W. J. et al. Gold nanoparticles capped with polyethyleneimine for enhanced siRNA delivery. Small 6, 239–246 (2010).

    CAS  PubMed  Google Scholar 

  45. Park, K. M. et al. All-trans-retinoic acid (ATRA)-grafted polymeric gene carriers for nuclear translocation and cell growth control. Biomaterials 30, 2642–2652 (2009).

    CAS  PubMed  Google Scholar 

  46. Swartz, M. A. et al. Tumor microenvironment complexity: emerging roles in cancer therapy. Cancer Res. 72, 2473–2480 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Li, H., Qiu, Z. W., Li, F. & Wang, C. L. The relationship between MMP-2 and MMP-9 expression levels with breast cancer incidence and prognosis. Oncol. Lett. 14, 5865–5870 (2017).

    PubMed  PubMed Central  Google Scholar 

  48. Salem, N. et al. High expression of matrix metalloproteinases: MMP-2 and MMP-9 predicts poor survival outcome in colorectal carcinoma. Future Oncol. 12, 323–331 (2016).

    CAS  PubMed  Google Scholar 

  49. Zheng, H. C. et al. Expressions of MMP-2, MMP-9 and VEGF are closely linked to growth, invasion, metastasis and angiogenesis of gastric carcinoma. Anticancer Res. 26, 3579–3583 (2006).

    CAS  PubMed  Google Scholar 

  50. Trudel, D. et al. Significance of MMP-2 expression in prostate cancer: an immunohistochemical study. Cancer Res. 63, 8511–8515 (2003).

    CAS  PubMed  Google Scholar 

  51. Han, X. et al. An extendable star-like nanoplatform for functional and anatomical imaging-guided photothermal oncotherapy. ACS Nano 13, 4379–4391 (2019).

    CAS  PubMed  Google Scholar 

  52. Kanamala, M. et al. Dual pH-sensitive liposomes with low pH-triggered sheddable PEG for enhanced tumor-targeted drug delivery. Nanomedicine (Lond). 14, 1972–1990 (2019).

    Google Scholar 

  53. Li, H. J. et al. Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. Proc. Natl Acad. Sci. USA 113, 4164–4169 (2016).

    CAS  PubMed  Google Scholar 

  54. Bachem, M. G. et al. Identification, culture, and characterization of pancreatic stellate cells in rats and humans. Gastroenterology 115, 421–432 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB36000000), the National Key R&D Program of China (2018YFA0208900 and 2018YFE0205300), the K. C. Wong Education Foundation (GJTD-2018-03), the Key Research Program of Frontier Sciences CAS (ZDBS-LY-SLH039), the National Postdoctoral Program for Innovative Talents (BX20180083), and the National Natural Science Foundation of China (31671023).

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. and G.N. originated the method of preparing PLP-D-R; X.H. and G.N. originated the method of preparing Au@PP/RA/siHSP47. All authors wrote the manuscript and approved the contents of the protocol.

Corresponding author

Correspondence to Guangjun Nie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Giuseppe Curigliano, Zhuang Liu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Li, S. et al. Nat. Biomed. Eng. 1, 667–679 (2017): https://doi.org/10.1038/s41551-017-0115-8

Han, X. et al. Nat. Commun. 9, 3390 (2018): https://doi.org/10.1038/s41467-018-05906-x

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Han, X. & Nie, G. Responsive and activable nanomedicines for remodeling the tumor microenvironment. Nat Protoc 16, 405–430 (2021). https://doi.org/10.1038/s41596-020-00421-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-020-00421-0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research