Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

In vitro generation of self-renewing human intestinal epithelia over planar and shaped collagen hydrogels

Abstract

The large intestine, with its array of crypts lining the epithelium and diverse luminal contents, regulates homeostasis throughout the body. In vitro crypts formed from primary human intestinal epithelial stem cells on a 3D shaped hydrogel scaffold replicate the functional and architectural features of in vivo crypts. Collagen scaffolding assembly methods are provided, along with the microfabrication and soft lithography protocols necessary to shape these hydrogels to match the dimensions and density of in vivo crypts. In addition, stem-cell scale-up protocols are provided so that even ultrasmall primary samples can be used as starting material. Initially, these cells are seeded as a proliferative monolayer over the shaped scaffold and cultured as stem/proliferative cells to expand them and cover the scaffold surface with the crypt-shaped structures. To convert these immature crypts into fully polarized, functional units with a basal stem cell niche and luminal differentiated cell zone, stable, linear gradients of growth factors are formed across the crypts. This platform supports the formation of chemical gradients across the crypts, including those of growth and differentiation factors, inflammatory compounds, bile and food metabolites and bacterial products. All microfabrication and device assembly steps are expected to take 8 d, with the primary cells cultured for 12 d to form mature in vitro crypts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3: Monolayer hydrogel maintenance of primary intestinal epithelial cells.
Fig. 4: Design of an in vitro crypt photomask.
Fig. 5: Microfabrication and cell culture insert modification for in vitro crypts.
Fig. 6: Formation and characterization of in vitro crypts.

Similar content being viewed by others

Data availability

The data that support the findings of this study are reported in previous publications (refs. 20,24,37).

References

  1. Wang, Y. et al. Bioengineered systems and designer matrices that recapitulate the intestinal stem cell niche. Cell. Mol. Gastroenterol. Hepatol. 5, 440–453.e1 (2018).

    PubMed  PubMed Central  Google Scholar 

  2. Dutton, J. S., Hinman, S. S., Kim, R., Wang, Y. L. & Allbritton, N. L. Primary cell-derived intestinal models: recapitulating physiology. Trends Biotechnol. 37, 744–760 (2019).

    CAS  PubMed  Google Scholar 

  3. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

    CAS  PubMed  Google Scholar 

  4. Sangiorgi, E. & Capecchi, M. R. Bmi1 is expressed in vivo in intestinal stem cells. Nat. Genet. 40, 915–920 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Greicius, G. et al. PDGFRα+ pericryptal stromal cells are the critical source of Wnts and RSPO3 for murine intestinal stem cells in vivo. Proc. Natl Acad. Sci. USA 115, E3173–E3181 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Shoshkes-Carmel, M. et al. Subepithelial telocytes are an important source of Wnts that supports intestinal crypts. Nature 557, 242–246 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hsu, Y. C., Li, L. S. & Fuchs, E. Transit-amplifying cells orchestrate stem cell activity and tissue regeneration. Cell 157, 935–949 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Baker, A. M. et al. Quantification of crypt and stem cell evolution in the normal and neoplastic human colon. Cell Rep. 8, 940–947 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. VanDussen, K. L. et al. Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells. Development 139, 488–497 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kaiko, G. E. et al. The colonic crypt protects stem cells from microbiota-derived metabolites. Cell 167, 1137 (2016).

    CAS  PubMed  Google Scholar 

  11. Verma, M. S. et al. A common mechanism links activities of butyrate in the colon. ACS Chem. Biol. 13, 1291–1298 (2018).

    CAS  PubMed  Google Scholar 

  12. Bultman, S. J. Butyrate consumption of differentiated colonocytes in the upper crypt promotes homeostatic proliferation of stem and progenitor cells near the crypt base. Transl. Cancer Res. 5, S526–S528 (2016).

    PubMed  Google Scholar 

  13. Parada Venegas, D. et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 10, 277 (2019).

    PubMed  PubMed Central  Google Scholar 

  14. Gareau, M. G., Sherman, P. M. & Walker, W. A. Probiotics and the gut microbiota in intestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 7, 503–514 (2010).

    PubMed  PubMed Central  Google Scholar 

  15. Peters, M. F. et al. Developing in vitro assays to transform gastrointestinal safety assessment: potential for microphysiological systems. Lab Chip 20, 1177–1190 (2020).

    CAS  PubMed  Google Scholar 

  16. Jung, P. et al. Isolation and in vitro expansion of human colonic stem cells. Nat. Med. 17, 1225–1227 (2011).

    CAS  PubMed  Google Scholar 

  17. Glorevski, N. et al. Designer matrices for intestinal stem cell and organoid culture. Nature 539, 560–564 (2016).

    Google Scholar 

  18. van de Wetering, M. et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161, 933–945 (2015).

    PubMed  PubMed Central  Google Scholar 

  19. Wang, Y. L. et al. A microengineered collagen scaffold for generating a polarized crypt-villus architecture of human small intestinal epithelium. Biomaterials 128, 44–55 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, Y. et al. Formation of human colonic crypt array by application of chemical gradients across a shaped epithelial monolayer. Cell. Mol. Gastroenterol. Hepatol. 5, 113–130 (2018).

    PubMed  Google Scholar 

  21. Miyoshi, H. & Stappenbeck, T. S. In vitro expansion and genetic modification of gastrointestinal stem cells in spheroid culture. Nat. Protoc. 8, 2471–2482 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, Y. L. et al. Self-renewing monolayer of primary colonic or rectal epithelial cells. Cell. Mol. Gastroenterol. Hepatol. 4, 165–182.e7 (2017).

    PubMed  PubMed Central  Google Scholar 

  23. Wang, X. et al. Cloning and variation of ground state intestinal stem cells. Nature 522, 173–178 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Pai, J. H. et al. Photoresist with low fluorescence for bioanalytical applications. Anal. Chem. 79, 8774–8780 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hu, S. et al. Surface modification of poly(dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting. Anal. Chem. 74, 4117–4123 (2002).

    CAS  PubMed  Google Scholar 

  26. Martić-Kehl, M. I., Schibli, R. & Schubiger, P. A. Can animal data predict human outcome? Problems and pitfalls of translational animal research. Eur. J. Nucl. Med. Mol. Imaging 39, 1492–1496 (2012).

    PubMed  PubMed Central  Google Scholar 

  27. González-González, M. et al. Investigating gut permeability in animal models of disease. Front. Physiol. 9, 1962 (2019).

    PubMed  PubMed Central  Google Scholar 

  28. Schwerdtfeger, L. A., Nealon, N. J., Ryan, E. P. & Tobet, S. A. Human colon function ex vivo: dependence on oxygen and sensitivity to antibiotic. PLoS ONE 14, e0217170 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Artursson, P., Palm, K. & Luthman, K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug Del. Rev. 46, 27–43 (2001).

    CAS  Google Scholar 

  30. Chow, E. C. Y., Liu, S., Du, Y. & Pang, K. S. The caco-2 cell monolayer: usefulness and limitations. Expert Opin. Drug Metab. Toxicol. 4, 395–411 (2008).

    PubMed  Google Scholar 

  31. Gunasekara, D. B. et al. A monolayer of primary colonic epithelium generated on a scaffold with a gradient of stiffness for drug transport studies. Anal. Chem. 90, 13331–13340 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Moon, C., VanDussen, K. L., Miyoshi, H. & Stappenbeck, T. S. Development of a primary mouse intestinal epithelial cell monolayer culture system to evaluate factors that modulate IgA transcytosis. Mucosal Immunol 7, 818–828 (2014).

    CAS  PubMed  Google Scholar 

  33. VanDussen, K. L. et al. Development of an enhanced human gastrointestinal epithelial culture system to facilitate patient-based assays. Gut 64, 911–920 (2015).

    CAS  PubMed  Google Scholar 

  34. Wang, Y. et al. Analysis of interleukin 8 secretion by a stem-cell-derived human-intestinal-epithelial-monolayer platform. Anal. Chem. 90, 11523–11530 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, Y. et al. Long-term culture captures injury-repair cycles of colonic stem cells. Cell 179, 1144–1159.e15 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kasendra, M. et al. Development of a primary human Small Intestine-on-a-Chip using biopsy-derived organoids. Sci. Rep. 8, 2871 (2018).

    PubMed  PubMed Central  Google Scholar 

  37. Hinman, S. S., Wang, Y. & Allbritton, N. L. Photopatterned membranes and chemical gradients enable scalable phenotypic organization of primary human colon epithelial models. Anal. Chem. 91, 15240–15247 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim, H. J. & Ingber, D. E. Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr. Biol. (Camb.) 5, 1130–1140 (2013).

    CAS  Google Scholar 

  39. Jalili-Firoozinezhad, S. et al. Modeling radiation injury-induced cell death and countermeasure drug responses in a human Gut-on-a-Chip. Cell Death Dis. 9, 223 (2018).

    PubMed  PubMed Central  Google Scholar 

  40. Jalili-Firoozinezhad, S. et al. A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nat. Biomed. Eng. 3, 520–531 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Tovaglieri, A. et al. Species-specific enhancement of enterohemorrhagic E. coli pathogenesis mediated by microbiome metabolites. Microbiome 7, 43 (2019).

    PubMed  PubMed Central  Google Scholar 

  42. Sontheimer-Phelps, A. et al. Human colon-on-a-chip enables continuous in vitro analysis of colon mucus layer accumulation and physiology. Cell. Mol. Gastroenterol. Hepatol. 9, 507–526 (2020).

    PubMed  Google Scholar 

  43. Herland, A. et al. Quantitative prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized organ chips. Nat. Biomed. Eng. 4, 421–436 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, L., Murthy, S. K., Barabino, G. A. & Carrier, R. L. Synergic effects of crypt-like topography and ECM proteins on intestinal cell behavior in collagen based membranes. Biomaterials 31, 7586–7598 (2010).

    CAS  PubMed  Google Scholar 

  45. Esch, M. B. et al. On chip porous polymer membranes for integration of gastrointestinal tract epithelium with microfluidic ‘body-on-a-chip’ devices. Biomed. Microdevices 14, 895–906 (2012).

    CAS  PubMed  Google Scholar 

  46. Yi, B. et al. Three-dimensional in vitro gut model on a villi-shaped collagen scaffold. BioChip J. 11, 219–231 (2017).

    CAS  Google Scholar 

  47. Costello, C. M. et al. Microscale bioreactors for in situ characterization of GI epithelial cell physiology. Sci. Rep. 7, 12515 (2017).

    PubMed  PubMed Central  Google Scholar 

  48. Kim, W. & Kim, G. An innovative cell-printed microscale collagen model for mimicking intestinal villus epithelium. Chem. Eng. J. 224, 2308–2318 (2018).

    Google Scholar 

  49. Kim, W. & Kim, G. Intestinal villi model with blood capillaries fabricated using collagen-based bioink and dual-cell-printing process. ACS Appl. Mater. Interfaces 10, 41185–41196 (2018).

    CAS  PubMed  Google Scholar 

  50. Fujimichi, Y., Otsuka, K., Tomita, M. & Iwasaki, T. An efficient intestinal organoid system of direct sorting to evaluate stem cell competition in vitro. Sci. Rep. 9, 20297 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kozuka, K. et al. Development and characterization of a human and mouse intestinal epithelial cell monolayer platform. Stem Cell Rep. 9, 1976–1990 (2017).

    CAS  Google Scholar 

  52. In, J. et al. Enterohemorrhagic Escherichia coli reduces mucus and intermicrovillar bridges in human stem cell-derived colonoids. Cell. Mol. Gastroenterol. Hepatol. 2, 48–62.e3 (2016).

    PubMed  Google Scholar 

  53. D’Argenio, G. & Mazzacca, G. Short-chain fatty acid in the human colon—relation to inflammatory bowel diseases and colon cancer. in Advances in Nutrition and Cancer 2 Vol. 472 (eds. Zappia, V. et al.) 149–158 (Kluwer Academic/Plenum Publishers, 1999).

  54. Goncalves, P. & Martel, F. Butyrate and colorectal cancer: the role of butyrate transport. Curr. Drug Metab. 14, 994–1008 (2013).

    CAS  PubMed  Google Scholar 

  55. Kim, R. et al. An in vitro intestinal platform with a self-sustaining oxygen gradient to study the human gut/microbiome interface. Biofabrication 12, 015006 (2019).

    PubMed  PubMed Central  Google Scholar 

  56. Drost, J. et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature 521, 43–47 (2015).

    CAS  PubMed  Google Scholar 

  57. Matano, M. et al. Modeling colorectal cancer using CRISPR-Cas9–mediated engineering of human intestinal organoids. Nat. Med. 21, 256–262 (2015).

    CAS  PubMed  Google Scholar 

  58. Wang, Y., Kim, R., Sims, C. E. & Allbritton, N. L. Building a thick mucus hydrogel layer to improve the physiological relevance of in vitro primary colonic epithelial models. Cell. Mol. Gastroenterol. Hepatol. 8, 653–655.e5 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Speer, J. E., Wang, Y., Fallon, J. K., Smith, P. C. & Allbritton, N. L. Evaluation of human primary intestinal monolayers for drug metabolizing capabilities. J. Biol. Eng. 13, 82 (2019).

    PubMed  PubMed Central  Google Scholar 

  60. Wang, Y. L. et al. In vitro generation of mouse colon crypts. ACS Biomater. Sci. Eng. 3, 2502–2513 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Speer, J. E. et al. Molecular transport through primary human small intestinal monolayers by culture on a collagen scaffold with a gradient of chemical cross-linking. J. Biol. Eng. 13, 82 (2019).

    PubMed  PubMed Central  Google Scholar 

  62. Keith, B. P. et al. Colonic epithelial miR-31 associates with the development of Crohn’s phenotypes. JCI Insight 3, e122788 (2018).

    PubMed Central  Google Scholar 

  63. Toyonaga, T. et al. P149 decreased colonic activin receptor-like kinase 1 disrupts epithelial barrier integrity and is associated with a poor clinical outcome in Crohn’s disease. Gastroenterology 158, S46 (2020).

    Google Scholar 

  64. Finkbeiner, S. R. et al. Transcriptome-wide analysis reveals hallmarks of human intestine development and maturation in vitro and in vivo. Stem Cell Rep. 4, 1140–1155 (2015).

    CAS  Google Scholar 

  65. Frantz, C., Stewart, K. M. & Weaver, V. M. The extracellular matrix at a glance. J. Cell Sci. 123, 4195–4200 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Plow, E. F., Haas, T. A., Zhang, L., Loftus, J. & Smith, J. W. Ligand binding to integrins. J. Biol. Chem. 275, 21785–21788 (2000).

    CAS  PubMed  Google Scholar 

  67. Dosh, R. H., Jordan-Mahy, N., Sammon, C. & Le Maitre, C. L. Use of l-pNIPAM hydrogel as a 3D-scaffold for intestinal crypts and stem cell tissue engineering. Biomater. Sci. 7, 4310–4324 (2019).

    CAS  PubMed  Google Scholar 

  68. Liu, Y. et al. A simple, cross-linked collagen tissue substitute for corneal implantation. Invest. Ophthalmol. Vis. Sci. 47, 1869–1875 (2006).

    PubMed  Google Scholar 

  69. Song, E., Yeon Kim, S., Chun, T., Byun, H. J. & Lee, Y. M. Collagen scaffolds derived from a marine source and their biocompatibility. Biomaterials 27, 2951–2961 (2006).

    CAS  PubMed  Google Scholar 

  70. VanDussen, K. L., Sonnek, N. M. & Stappenbeck, T. S. L-WRN conditioned medium for gastrointestinal epithelial stem cell culture shows replicable batch-to-batch activity levels across multiple research teams. Stem Cell Res. 37, 101430 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hinman, S. S. et al. Microphysiological system design: simplicity is elegance. Curr. Opin. Biomed. Eng. 13, 94–102 (2020).

    PubMed  PubMed Central  Google Scholar 

  72. Noor, N. et al. 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv. Sci. (Weinh.). 6, 1900344 (2019).

    PubMed  PubMed Central  Google Scholar 

  73. Drzewiecki, K. E. et al. Methacrylation induces rapid, temperature-dependent, reversible self-assembly of type-I collagen. Langmuir 30, 11204–11211 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Diamantides, N. et al. Correlating rheological properties and printability of collagen bioinks: the effects of riboflavin photocrosslinking and pH. Biofabrication 9, 034102 (2017).

    PubMed  Google Scholar 

  75. Rhee, S., Puetzer, J. L., Mason, B. N., Reinhart-King, C. A. & Bonassar, L. J. 3D bioprinting of spatially heterogeneous collagen constructs for cartilage tissue engineering. ACS Biomater. Sci. Eng. 2, 1800–1805 (2016).

    CAS  PubMed  Google Scholar 

  76. Lee, A. et al. 3D bioprinting of collagen to rebuild components of the human heart. Science 365, 482–487 (2019).

    CAS  PubMed  Google Scholar 

  77. Dekkers, J. F. et al. High-resolution 3D imaging of fixed and cleared organoids. Nat. Protoc. 14, 1756–1771 (2019).

    CAS  PubMed  Google Scholar 

  78. Zhu, X. et al. Ultrafast optical clearing method for three-dimensional imaging with cellular resolution. Proc. Natl Acad. Sci. USA 116, 11480–11489 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hernandez, H. G. et al. Fully synthetic matrices for in vitro culture of primary human intestinal enteroids and endometrial organoids. Biomaterials 254, 120125 (2020).

    Google Scholar 

  80. Ahmad, A. A. et al. Optimization of 3-D organotypic primary colonic cultures for organ-on-chip applications. J. Biol. Eng. 8, 9 (2014).

    PubMed  PubMed Central  Google Scholar 

  81. Van der Flier, L. G., Haegebarth, A., Stange, D. E., Van de Wetering, M. & Clevers, H. Olfm4 is a robust marker for stem cells in human intestine and marks a subset of colorectal cancer cells. Gastroenterology 137, 15–17 (2009).

    PubMed  Google Scholar 

  82. Ramalingam, S., Daughtridge, G. W., Johnston, M. J., Gracz, A. D. & Magness, S. T. Distinct levels of Sox9 expression mark colon epithelial stem cells that form colonoids in culture. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G10–G20 (2012).

    CAS  PubMed  Google Scholar 

  83. Salic, A. & Mitchison, T. J. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc. Natl Acad. Sci. USA 105, 2415–2420 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) of the National Institutes of Health (R01 DK109559) and the University of Washington (start-up funding). We additionally wish to thank S. T. Magness for procurement of the intestinal biopsy specimen, and J. S. Dutton, J. C. Huling and A. Proctor for assistance in assembling the working versions of these protocols that are used within our research group.

Author information

Authors and Affiliations

Authors

Contributions

N.L.A. and Y.W. conceived and designed the culture platform. S.S.H., R.K. and Y.W. collected and analyzed the data. S.S.H. prepared the figures. All authors contributed to the writing of the manuscript. S.S.H. and N.L.A. revised the manuscript.

Corresponding author

Correspondence to Nancy L. Allbritton.

Ethics declarations

Competing interests

N.L.A. and Y.W. have a financial interest in Altis Biosystems, Inc. The remaining authors declare no competing financial interests.

Additional information

Peer review information Nature Protocols thanks Gretchen Mahler, Jun Sun and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Wang, Y. L. et al. Cell. Mol. Gastroenterol. Hepatol. 4, 165–182.e7 (2017): https://doi.org/10.1016/j.jcmgh.2017.02.011

Wang, Y. et al. Cell. Mol. Gastroenterol. Hepatol. 5, 113–130 (2018): https://doi.org/10.1016/j.jcmgh.2017.10.007

Wang, Y. L. et al. Biomaterials 128, 44–55 (2017): https://doi.org/10.1016/j.biomaterials.2017.03.005

Supplementary information

Supplementary Information

Supplementary Figs. 1–3 and Supplementary Table 1.

Reporting Summary

Supplementary Data 1

Sheet 1: collagen neutralization volumes; Sheet 2: subcultivation ratios

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hinman, S.S., Wang, Y., Kim, R. et al. In vitro generation of self-renewing human intestinal epithelia over planar and shaped collagen hydrogels. Nat Protoc 16, 352–382 (2021). https://doi.org/10.1038/s41596-020-00419-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-020-00419-8

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research