Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Establishment of human fetal hepatocyte organoids and CRISPR–Cas9-based gene knockin and knockout in organoid cultures from human liver

Abstract

The liver is composed of two epithelial cell types: hepatocytes and liver ductal cells. Culture conditions for expansion of human liver ductal cells in vitro as organoids were previously described in a protocol; however, primary human hepatocytes remained hard to expand, until recently. In this protocol, we provide full details of how we overcame this limitation, establishing culture conditions that facilitate long-term expansion of human fetal hepatocytes as organoids. In addition, we describe how to generate (multi) gene knockouts using CRISPR–Cas9 in both human fetal hepatocyte and adult liver ductal organoid systems. Using a CRISPR–Cas9 and homology-independent organoid transgenesis (CRISPR-HOT) approach, efficient gene knockin can be achieved in these systems. These gene knockin and knockout approaches, and their multiplexing, should be useful for a variety of applications, such as disease modeling, investigating gene functions and studying processes, such as cellular differentiation and cell division. The protocol to establish human fetal hepatocyte organoid cultures takes ~1–2 months. The protocols to genome engineer human liver ductal organoids and human fetal hepatocyte organoids take 2–3 months.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic overview of this protocol.
Fig. 2: Human fetal hepatocyte organoid line establishment.
Fig. 3: Genome engineering of human fetal hepatocyte organoids.
Fig. 4: Genome engineering of human liver ductal organoids.
Fig. 5: Representative follow-up and characterization of human fetal hepatocyte organoids and genome-engineered human liver ductal organoids.

References

  1. 1.

    Khetani, S. R. & Bhatia, S. N. Microscale culture of human liver cells for drug development. Nat. Biotechnol. 26, 120–126 (2008).

    CAS  PubMed  Google Scholar 

  2. 2.

    Bell, C. C. et al. Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease. Sci. Rep. 6, 25187 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Xiang, C. et al. Long-term functional maintenance of primary human hepatocytes in vitro. Science 364, 399–402 (2019).

    CAS  PubMed  Google Scholar 

  4. 4.

    Jang, K. J. et al. Reproducing human and cross-species drug toxicities using a Liver-Chip. Sci. Transl. Med. 11, eaax5516 (2019).

    CAS  PubMed  Google Scholar 

  5. 5.

    Takebe, T. et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499, 481–484 (2013).

    CAS  PubMed  Google Scholar 

  6. 6.

    Wu, F. et al. Generation of hepatobiliary organoids from human induced pluripotent stem cells. J. Hepatol. 70, 1145–1158 (2019).

    PubMed  Google Scholar 

  7. 7.

    Mun, S. J. et al. Generation of expandable human pluripotent stem cell-derived hepatocyte-like liver organoids. J. Hepatol. 71, 970–985 (2019).

    CAS  PubMed  Google Scholar 

  8. 8.

    Wang, Q. et al. Generation of human hepatocytes from extended pluripotent stem cells. Cell Res. 30, 810–813 (2020).

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Takebe, T. et al. Massive and reproducible production of liver buds entirely from human pluripotent stem cells. Cell Rep. 21, 2661–2670 (2017).

    CAS  PubMed  Google Scholar 

  10. 10.

    Huang, P. et al. Direct reprogramming of human fibroblasts to functional and expandable hepatocytes. Cell Stem Cell 14, 370–384 (2014).

    CAS  PubMed  Google Scholar 

  11. 11.

    Nakamori, D., Akamine, H., Takayama, K., Sakurai, F. & Mizuguchi, H. Direct conversion of human fibroblasts into hepatocyte-like cells by ATF5, PROX1, FOXA2, FOXA3, and HNF4A transduction. Sci. Rep. 7, 16675 (2017).

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Xie, B. et al. A two-step lineage reprogramming strategy to generate functionally competent human hepatocytes from fibroblasts. Cell Res. 29, 696–710 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Sun, L. et al. Modelling liver cancer initiation with organoids derived from directly reprogrammed human hepatocytes. Nat. Cell Biol. 21, 1015–1026 (2019).

    CAS  PubMed  Google Scholar 

  14. 14.

    Huch, M. et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160, 299–312 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Zhang, K. et al. In vitro expansion of primary human hepatocytes with efficient liver repopulation capacity. Cell Stem Cell 23, 806–819 (2018).

    CAS  PubMed  Google Scholar 

  16. 16.

    Kim, Y. et al. Small molecule-mediated reprogramming of human hepatocytes into bipotent progenitor cells. J. Hepatol. 70, 97–107 (2019).

    CAS  PubMed  Google Scholar 

  17. 17.

    Katsuda, T. et al. Generation of human hepatic progenitor cells with regenerative and metabolic capacities from primary hepatocytes. eLife 8, e47313 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Fu, G. B. et al. Expansion and differentiation of human hepatocyte-derived liver progenitor-like cells and their use for the study of hepatotropic pathogens. Cell Res. 29, 8–22 (2019).

    CAS  PubMed  Google Scholar 

  19. 19.

    Peng, W. C. et al. Inflammatory cytokine TNFα promotes the long-term expansion of primary hepatocytes in 3D culture. Cell 175, 1607–1619 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Hu, H. et al. Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell 175, 1591–1606 (2018).

    CAS  PubMed  Google Scholar 

  21. 21.

    Hendriks, D., Clevers, H. & Artegiani, B. CRISPR-Cas tools and their application in genetic engineering of human stem cells and organoids. Cell Stem Cell 27, 705–731 (2020).

    CAS  PubMed  Google Scholar 

  22. 22.

    Artegiani, B. et al. Probing the tumor suppressor function of BAP1 in CRISPR-engineered human liver organoids. Cell Stem Cell 24, 927–943 (2019).

    CAS  PubMed  Google Scholar 

  23. 23.

    Artegiani, B. et al. Fast and efficient generation of knock-in human organoids using homology-independent CRISPR–Cas9 precision genome editing. Nat. Cell Biol. 22, 321–331 (2020).

    CAS  PubMed  Google Scholar 

  24. 24.

    Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    CAS  PubMed  Google Scholar 

  25. 25.

    Sato, T. et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141, 1762–1772 (2011).

    CAS  PubMed  Google Scholar 

  26. 26.

    Bartfeld, S. et al. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology 148, 126–136 (2015).

    PubMed  Google Scholar 

  27. 27.

    Schutgens, F. et al. Tubuloids derived from human adult kidney and urine for personalized disease modeling. Nat. Biotechnol. 37, 303–313 (2019).

    CAS  PubMed  Google Scholar 

  28. 28.

    Sachs, N. et al. Long-term expanding human airway organoids for disease modeling. EMBO J. 38, e100300 (2019).

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Sekine, S., Gutierrez, P. J., Lan, B. Y., Feng, S. & Hebrok, M. Liver-specific loss of beta-catenin results in delayed hepatocyte proliferation after partial hepatectomy. Hepatology 45, 361–368 (2007).

    CAS  PubMed  Google Scholar 

  30. 30.

    Gao, S. et al. Ex vivo gene delivery to hepatocytes: techniques, challenges, and underlying mechanisms. Ann. Biomed. Eng. 40, 1851–1861 (2012).

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Broutier, L. et al. Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation. Nat. Protoc. 11, 1724–1743 (2016).

    CAS  PubMed  Google Scholar 

  32. 32.

    Artegiani, B., Lange, C. & Calegari, F. Expansion of embryonic and adult neural stem cells by in utero electroporation or viral stereotaxic injection. J. Vis. Exp. 68, 4093 (2012).

    Google Scholar 

  33. 33.

    Fujii, M., Matano, M., Nanki, K. & Sato, T. Efficient genetic engineering of human intestinal organoids using electroporation. Nat. Protoc. 10, 1474–1485 (2015).

    CAS  PubMed  Google Scholar 

  34. 34.

    Drost, J. et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature 521, 43–47 (2015).

    CAS  PubMed  Google Scholar 

  35. 35.

    Drost, J. et al. Use of CRISPR-modified human stem cell organoids to study the origin of mutational signatures in cancer. Science 358, 234–238 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Matano, M. et al. Modeling colorectal cancer using CRISPR–Cas9-mediated engineering of human intestinal organoids. Nat. Med. 21, 256–262 (2015).

    CAS  PubMed  Google Scholar 

  37. 37.

    Fumagalli, A. et al. Genetic dissection of colorectal cancer progression by orthotopic transplantation of engineered cancer organoids. Proc. Natl Acad. Sci. USA 114, E2357–E2364 (2017).

    CAS  PubMed  Google Scholar 

  38. 38.

    Schwank, G. et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13, 653–658 (2013).

    CAS  PubMed  Google Scholar 

  39. 39.

    Cortina, C. et al. A genome editing approach to study cancer stem cells in human tumors. EMBO Mol. Med. 9, 869–879 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Sugimoto, S. et al. Reconstruction of the human colon epithelium in vivo. Cell Stem Cell 22, 171–176 (2018).

    CAS  PubMed  Google Scholar 

  41. 41.

    Shimokawa, M. et al. Visualization and targeting of LGR5+ human colon cancer stem cells. Nature 545, 187–192 (2017).

    CAS  PubMed  Google Scholar 

  42. 42.

    Haapaniemi, E., Botla, S., Persson, J., Schmierer, B. & Taipale, J. CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response. Nat. Med. 24, 927–930 (2018).

    CAS  PubMed  Google Scholar 

  43. 43.

    Ihry, R. J. et al. p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells. Nat. Med. 24, 939–946 (2018).

    CAS  PubMed  Google Scholar 

  44. 44.

    Schiroli, G. et al. Precise gene editing preserves hematopoietic stem cell function following transient p53-mediated DNA damage response. Cell Stem Cell 24, 551–565 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Yeh, C. D., Richardson, C. D. & Corn, J. E. Advances in genome editing through control of DNA repair pathways. Nat. Cell Biol. 21, 1468–1478 (2019).

    CAS  PubMed  Google Scholar 

  46. 46.

    Betermier, M., Bertrand, P. & Lopez, B. S. Is non-homologous end-joining really an inherently error-prone process? PLoS Genet. 10, e1004086 (2014).

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Lackner, D. H. et al. A generic strategy for CRISPR–Cas9-mediated gene tagging. Nat. Commun. 6, 10237 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Suzuki, K. et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540, 144–149 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Schmid-Burgk, J. L., Honing, K., Ebert, T. S. & Hornung, V. CRISPaint allows modular base-specific gene tagging using a ligase-4-dependent mechanism. Nat. Commun. 7, 12338 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Guo, T. et al. Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing. Genome Biol. 19, 170 (2018).

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Kleinstiver, B. P. et al. Engineered CRISPR–Cas9 nucleases with altered PAM specificities. Nature 523, 481–485 (2015).

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Hu, J. H. et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57–63 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Gaudelli, N. M. et al. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Kuscu, C. et al. CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations. Nat. Methods 14, 710–712 (2017).

    CAS  PubMed  Google Scholar 

  56. 56.

    Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    de Lau, W. et al. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 476, 293–297 (2011).

    PubMed  Google Scholar 

  58. 58.

    Korinek, V. et al. Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC−/− colon carcinoma. Science 275, 1784–1787 (1997).

    CAS  PubMed  Google Scholar 

  59. 59.

    Ran, F. A. et al. Genome engineering using the CRISPR–Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Labun, K. et al. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res. 47, W171–W174 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank H. Gehart for providing fluorescent images of human liver ductal organoids; S. van der Brink for RSPO1-conditioned medium production; and L. Huang and L. Luciana for critically reading the manuscript. We acknowledge all of the anonymous tissue donors. This work is part of the Oncode Institute, which is partly financed by the Dutch Cancer Society. D.H. is supported by an SSMF postdoctoral fellowship (P19-0074).

Author information

Affiliations

Authors

Contributions

Conceptualization: D.H. and B.A.; methodology: D.H., B.A. and H.H; formal analysis: D.H. and B.A.; investigation: D.H. and B.A.; resources: S.C.v.S.L. and H.C.; data curation: D.H. and B.A.; writing—original draft: D.H., B.A. and S.C.v.S.L.; writing—review and editing: D.H., B.A. and H.C.; visualization: D.H. and B.A.; project administration: D.H. and B.A.; and funding acquisition: H.C.

Corresponding authors

Correspondence to Delilah Hendriks or Benedetta Artegiani or Hans Clevers.

Ethics declarations

Competing interests

H.C. holds several patents on organoid technology.

Additional information

Peer review information Nature Protocols thanks Ömer Yilmaz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Hu, H. et al. Cell 175, 1591–1606 (2019): https://doi.org/10.1016/j.cell.2018.11.013

Artegiani., B. et al. Cell Stem Cell 24, 927–943 (2019): https://doi.org/10.1016/j.stem.2019.04.017

Artegiani, B. et al. Nat Cell Biol. 22, 321–331 (2020): https://doi.org/10.1038/s41556-020-0472-5

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hendriks, D., Artegiani, B., Hu, H. et al. Establishment of human fetal hepatocyte organoids and CRISPR–Cas9-based gene knockin and knockout in organoid cultures from human liver. Nat Protoc 16, 182–217 (2021). https://doi.org/10.1038/s41596-020-00411-2

Download citation

Further reading

  • Organoid and Spheroid Tumor Models: Techniques and Applications

    • Sreenivasulu Gunti
    • , Austin T.K. Hoke
    • , Kenny P. Vu
    •  & Nyall R. London

    Cancers (2021)

  • In vitro Modeling of Embryonal Tumors

    • Lars Custers
    • , Irene Paassen
    •  & Jarno Drost

    Frontiers in Cell and Developmental Biology (2021)

  • Building consensus on definition and nomenclature of hepatic, pancreatic, and biliary organoids

    • Ary Marsee
    • , Floris J.M. Roos
    • , Monique M.A. Verstegen
    • , Helmuth Gehart
    • , Eelco de Koning
    • , Frédéric Lemaigre
    • , Stuart J. Forbes
    • , Weng Chuan Peng
    • , Meritxell Huch
    • , Takanori Takebe
    • , Ludovic Vallier
    • , Hans Clevers
    • , Luc J.W. van der Laan
    • , Bart Spee
    • , Ary Marsee
    • , Floris Roos
    • , Monique Verstegen
    • , Hans Clevers
    • , Ludovic Vallier
    • , Takanori Takebe
    • , Meritxell Huch
    • , Weng Chuan Peng
    • , Stuart Forbes
    • , Frédéric Lemaigre
    • , Eelco de Koning
    • , Helmuth Gehart
    • , Luc van der Laan
    • , Bart Spee
    • , Sylvia Boj
    • , Pedro Baptista
    • , Kerstin Schneeberger
    • , Carol Soroka
    • , Markus Heim
    • , Sandro Nuciforo
    • , Kenneth Zaret
    • , Yoshimasa Saito
    • , Matthias Lutolf
    • , Vincenzo Cardinale
    • , Ben Simons
    • , Sven van IJzendoorn
    • , Akihide Kamiya
    • , Hiromi Chikada
    • , Shuyong Wang
    • , Seon Ju Mun
    • , Myung Jin Son
    • , Tamer Tevfik Onder
    • , James Boyer
    • , Toshiro Sato
    • , Nikitas Georgakopoulos
    • , Andre Meneses
    • , Laura Broutier
    • , Luke Boulter
    • , Dominic Grün
    • , Jan IJzermans
    • , Benedetta Artegiani
    • , Ruben van Boxtel
    • , Ewart Kuijk
    • , Guido Carpino
    • , Gary Peltz
    • , Jesus Banales
    • , Nancy Man
    • , Luigi Aloia
    • , Nicholas LaRusso
    • , Gregory George
    • , Casey Rimland
    • , George Yeoh
    • , Anne Grappin-Botton
    • , Daniel Stange
    • , Nicole Prior
    • , Janina E.E. Tirnitz-Parker
    • , Emma Andersson
    • , Chiara Braconi
    • , Nicholas Hannan
    • , Wei-Yu Lu
    • , Stephen Strom
    • , Pau Sancho-Bru
    • , Shinichiro Ogawa
    • , Vincenzo Corbo
    • , Madeline Lancaster
    • , Huili Hu
    • , Sabine Fuchs
    •  & Delilah Hendriks

    Cell Stem Cell (2021)

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing