Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Superresolution imaging of chromatin fibers to visualize epigenetic information on replicative DNA

Abstract

During DNA replication, the genetic information of a cell is copied. Subsequently, identical genetic information is segregated reliably to the two daughter cells through cell division. Meanwhile, DNA replication is intrinsically linked to the process of chromatin duplication, which is required for regulating gene expression and establishing cell identities. Understanding how chromatin is established, maintained or changed during DNA replication represents a fundamental question in biology. Recently, we developed a method to directly visualize chromatin components at individual replication forks undergoing DNA replication. This method builds upon the existing chromatin fiber technique and combines it with cell type–specific chromatin labeling and superresolution microscopy. In this method, a short pulse of nucleoside analog labels replicative regions in the cells of interest. Chromatin fibers are subsequently isolated and attached to a glass slide, after which a laminar flow of lysis buffer extends the lysed chromatin fibers parallel with the direction of the flow. Fibers are then immunostained for different chromatin-associated proteins and mounted for visualization using superresolution microscopy. Replication foci, or ‘bubbles,’ are identified by the presence of the incorporated nucleoside analog. For researchers experienced in molecular biology and superresolution microscopy, this protocol typically takes 2–3 d from sample preparation to data acquisition, with an additional day for data processing and quantification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: A flow chart of the chromatin fiber image acquisition and data analysis procedure.
Fig. 3: Superresolution imaging of chromatin fibers resolves sister chromatids.
Fig. 4: Distributions of old histone-enriched H3K27me3 and new histone-enriched H3K14Ac on Kc cell–derived chromatin fibers.
Fig. 5: Comparison of histone distribution patterns in fly and yeast using distinct methods.

Similar content being viewed by others

Data availability

All cell lines and fly lines described in this protocol can be obtained upon request. Data for graphs shown in Fig. 4c, 4f is available in Supplementary Table 1. Other data generated during this study are available from the corresponding author upon request.

References

  1. Kornberg, R. D. & Lorch, Y. Chromatin structure and transcription. Annu. Rev. Cell Biol. 8, 563–587 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Snedeker, J., Wooten, M. & Chen, X. The inherent asymmetry of DNA replication. Annu. Rev. Cell Dev. Biol. 33, 291–318 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Burgers, P. M. J. & Kunkel, T. A. Eukaryotic DNA replication fork. Annu. Rev. Biochem. 86, 417–438 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bell, S. P. & Dutta, A. DNA replication in eukaryotic cells. Annu. Rev. Biochem. 71, 333–374 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. DePamphilis, M. L. Review: nuclear structure and DNA replication. J. Struct. Biol. 129, 186–197 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Alabert, C., Jasencakova, Z. & Groth, A. Chromatin replication and histone dynamics. Adv. Exp. Med. Biol. 1042, 311–333 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Ramachandran, S., Ahmad, K. & Henikoff, S. Capitalizing on disaster: establishing chromatin specificity behind the replication fork. Bioessays 39 (2017).

  8. Miller, T. C. & Costa, A. The architecture and function of the chromatin replication machinery. Curr. Opin. Struct. Biol. 47, 9–16 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Ehrenhofer-Murray, A. E., Kamakaka, R. T. & Rine, J. A role for the replication proteins PCNA, RF-C, polymerase epsilon and Cdc45 in transcriptional silencing in Saccharomyces cerevisiae. Genetics 153, 1171–1182 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Arents, G., Burlingame, R. W., Wang, B. C., Love, W. E. & Moudrianakis, E. N. The nucleosomal core histone octamer at 3.1 Å resolution: a tripartite protein assembly and a left-handed superhelix. Proc. Natl Acad. Sci. USA 88, 10148–10152 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Annunziato, A. T. Assembling chromatin: the long and winding road. Biochim. Biophys. Acta 1819, 196–210 (2013).

    Article  PubMed  CAS  Google Scholar 

  13. Hammond, C. M., Stromme, C. B., Huang, H., Patel, D. J. & Groth, A. Histone chaperone networks shaping chromatin function. Nat. Rev. Mol. Cell. Biol. 18, 141–158 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Worcel, A., Han, S. & Wong, M. L. Assembly of newly replicated chromatin. Cell 15, 969–977 (1978).

    Article  CAS  PubMed  Google Scholar 

  15. Sogo, J. M., Stahl, H., Koller, T. & Knippers, R. Structure of replicating simian virus 40 minichromosomes. The replication fork, core histone segregation and terminal structures. J. Mol. Biol. 189, 189–204 (1986).

    Article  CAS  PubMed  Google Scholar 

  16. Jackson, V. & Chalkley, R. A new method for the isolation of replicative chromatin: selective deposition of histone on both new and old DNA. Cell 23, 121–134 (1981).

    Article  CAS  PubMed  Google Scholar 

  17. Leffak, I. M., Grainger, R. & Weintraub, H. Conservative assembly and segregation of nucleosomal histones. Cell 12, 837–845 (1977).

    Article  CAS  PubMed  Google Scholar 

  18. Seidman, M. M., Levine, A. J. & Weintraub, H. The asymmetric segregation of parental nucleosomes during chrosome replication. Cell 18, 439–449 (1979).

    Article  CAS  PubMed  Google Scholar 

  19. Weintraub, H. Cooperative alignment of nu bodies during chromosome replication in the presence of cycloheximide. Cell 9, 419–422 (1976).

    Article  CAS  PubMed  Google Scholar 

  20. Roufa, D. J. & Marchionni, M. A. Nucleosome segregation at a defined mammalian chromosomal site. Proc. Natl Acad. Sci. USA 79, 1810–1814 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yu, C. et al. A mechanism for preventing asymmetric histone segregation onto replicating DNA strands. Science 361, 1386–1389 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Petryk, N. et al. MCM2 promotes symmetric inheritance of modified histones during DNA replication. Science 361, 1389–1392 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Wooten, M. et al. Asymmetric histone inheritance via strand-specific incorporation and biased replication fork movement. Nat. Struct. Mol. Biol. 26, 732–743 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alabert, C. et al. Two distinct modes for propagation of histone PTMs across the cell cycle. Genes Dev. 29, 585–590 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lin, S., Yuan, Z. F., Han, Y., Marchione, D. M. & Garcia, B. A. Preferential phosphorylation on old histones during early mitosis in human cells. J. Biol. Chem. 291, 15342–15357 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yu, C. et al. Strand-specific analysis shows protein binding at replication forks and PCNA unloading from lagging strands when forks stall. Mol. Cell 56, 551–563 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Petryk, N. et al. Replication landscape of the human genome. Nat. Commun. 7, 10208 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McKnight, S. L. & Miller, O. L. Jr. Electron microscopic analysis of chromatin replication in the cellular blastoderm Drosophila melanogaster embryo. Cell 12, 795–804 (1977).

    Article  CAS  PubMed  Google Scholar 

  29. Lafzi, A., Moutinho, C., Picelli, S. & Heyn, H. Tutorial: guidelines for the experimental design of single-cell RNA sequencing studies. Nat. Protoc. 13, 2742–2757 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Chen, G., Ning, B. & Shi, T. Single-cell RNA-seq technologies and related computational data analysis. Front. Genet. 10, 317 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cohen, S. M., Chastain, P. D. 2nd, Cordeiro-Stone, M. & Kaufman, D. G. DNA replication and the GINS complex: localization on extended chromatin fibers. Epigenetics Chromatin 2, 6 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Ahmad, K. & Henikoff, S. Histone H3 variants specify modes of chromatin assembly. Proc. Natl Acad. Sci. USA 99(Suppl 4), 16477–16484 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Blower, M. D., Sullivan, B. A. & Karpen, G. H. Conserved organization of centromeric chromatin in flies and humans. Dev. Cell 2, 319–330 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chang, C. H. et al. Islands of retroelements are major components of Drosophila centromeres. PLOS Biol. 17, e3000241 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kuzminov, A. When DNA topology turns deadly—RNA polymerases dig in their R-Loops to stand their ground: new positive and negative (super)twists in the replication-transcription conflict. Trends Genet. 34, 111–120 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Koster, D. A., Crut, A., Shuman, S., Bjornsti, M. A. & Dekker, N. H. Cellular strategies for regulating DNA supercoiling: a single-molecule perspective. Cell 142, 519–530 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, J. C. Cellular roles of DNA topoisomerases: a molecular perspective. Nat. Rev. Mol. Cell. Biol. 3, 430–440 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Ljungman, M. & Hanawalt, P. C. Localized torsional tension in the DNA of human cells. Proc. Natl Acad. Sci. USA 89, 6055–6059 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. LaMarr, W. A., Yu, L., Nicolaou, K. C. & Dedon, P. C. Supercoiling affects the accessibility of glutathione to DNA-bound molecules: positive supercoiling inhibits calicheamicin-induced DNA damage. Proc. Natl Acad. Sci. USA 95, 102–107 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Sivaguru, M. et al. Comparative performance of airyscan and structured illumination superresolution microscopy in the study of the surface texture and 3D shape of pollen. Microsc. Res. Tech. 81, 101–114 (2018).

    Article  PubMed  Google Scholar 

  42. Gustafsson, M. G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198, 82–87 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Glushonkov, O., Réal, E., Boutant, E., Mély, Y. & Didier, P. Optimized protocol for combined PALM-dSTORM imaging. Sci. Rep. 8, 8749 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Techer, H. et al. Replication dynamics: biases and robustness of DNA fiber analysis. J. Mol. Biol. 425, 4845–4855 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Blythe, S. A. & Wieschaus, E. F. Establishment and maintenance of heritable chromatin structure during early Drosophila embryogenesis. elife 5, e20148 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  49. White-Cooper, H. Spermatogenesis: analysis of meiosis and morphogenesis. Methods Mol. Biol. 247, 45–75 (2004).

    PubMed  Google Scholar 

  50. Huang, H. et al. A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks. Nat. Struct. Mol. Biol. 22, 618–626 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gan, H. et al. The Mcm2-Ctf4-Polalpha axis facilitates parental histone H3-H4 transfer to lagging strands. Mol. Cell 72, 140–151.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gan, H. et al. Checkpoint kinase Rad53 couples leading- and lagging-strand DNA synthesis under replication stress. Mol. Cell 68, 446–455.e3 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhou, J. C. et al. CMG-Pol epsilon dynamics suggests a mechanism for the establishment of leading-strand synthesis in the eukaryotic replisome. Proc. Natl Acad. Sci. USA 114, 4141–4146 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Chuanhe Yu, Xu Hua and Zhiguo Zhang as well as Nataliya Petryk and Anja Groth for helpful discussions of this manuscript. We thank Shelby Blythe and Eric Wieschaus for the PCNA-EGFP fly line. We thank Barbara Mellone and Sharon Pavanacherry for suggestions on the chromatin fiber technique. We thank Johns Hopkins Integrated Imaging Center for confocal and Airyscan imaging and Carnegie Institute Imaging Center for STED microscopy work. This work was supported by NIH grants 5T32GM007231 and F31GM115149-01A1 (M.W.), NIH grant T32GM007231 (J.S.), NIH grant R01GM33397 (J.G.G.), and NIH grants R35GM127075 and R01GM112008, the Howard Hughes Medical Institute, the David and Lucile Packard Foundation and Johns Hopkins University startup funds (X.C.)

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, M.W., J.S., Z.F.N., J.G.G. and X.C.; methodology, M.W., J.S., Y.L., Z.F.N., J.G.G. and X.C.; investigation, M.W. and Y.L.; writing original draft, M.W. and X.C.; funding acquisition, J.G.G. and X.C.; supervision, J.G.G. and X.C.

Corresponding author

Correspondence to Xin Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Robert Duronio, Bing Zhu and Corella Casas-Delucchi for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Wooten, M. et al. Nat. Struct. Mol. Biol. 26, 732–743 (2019): https://doi.org/10.1038/s41594-019-0269-z

Integrated supplementary information

Supplementary Fig. 1 Modified 50-ml conical tube.

A modified 50-ml conical tube with a small hole made at the bottom with a 25-gauge hypodermic needle.

Supplementary Fig. 2 Modified 50-ml conical tube with lysis buffer.

Modified 50-ml conical tube containing 25 ml of lysis buffer with the cap screwed on and angled at 35° in preparation for lysis and fiber-generation steps.

Supplementary Fig. 3 50-ml conical tube zoomed-in view.

A zoom-in picture of Supplementary Fig. 2.

Supplementary Fig. 4 Humid chamber closed.

A humid chamber made with a P1000 tip box. The lid is wrapped with tin foil to minimize light exposure to slides placed inside. The lid should be placed on when slides are inside. The humid chamber can contain four slides comfortably.

Supplementary Fig. 5 Humid chamber open.

A humid chamber with the lid off. Note that a wet paper towel is placed at the bottom of the tip box shortly before adding the slides, which are placed on top of the tip rack.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5, Supplementary Tables 1 and 2 and Supplementary Methods.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wooten, M., Li, Y., Snedeker, J. et al. Superresolution imaging of chromatin fibers to visualize epigenetic information on replicative DNA. Nat Protoc 15, 1188–1208 (2020). https://doi.org/10.1038/s41596-019-0283-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-019-0283-y

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing