Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Formation and growth of sub-3-nm aerosol particles in experimental chambers

Abstract

Atmospheric new particle formation (NPF), which is observed in many environments globally, is an important source of boundary-layer aerosol particles and cloud condensation nuclei, which affect both the climate and human health. To better understand the mechanisms behind NPF, chamber experiments can be used to simulate this phenomenon under well-controlled conditions. Recent advancements in instrumentation have made it possible to directly detect the first steps of NPF of molecular clusters (~1–2 nm in diameter) and to calculate quantities such as the formation and growth rates of these clusters. Whereas previous studies reported particle formation rates as the flux of particles across a specified particle diameter or calculated them from measurements of larger particle sizes, this protocol outlines methods to directly quantify particle dynamics for cluster sizes. Here, we describe the instrumentation and analysis methods needed to quantify particle dynamics during NPF of sub-3-nm aerosol particles in chamber experiments. The methods described in this protocol can be used to make results from different chamber experiments comparable. The experimental setup, collection and post-processing of the data, and thus completion of this protocol, take from months up to years, depending on the chamber facility, experimental plan and level of expertise. Use of this protocol requires engineering capabilities and expertise in data analysis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Simulated NPF experiment and instrument response.
Fig. 2: Anticipated results from an NPF experiment performed in a chamber.
Fig. 3: Calculation of GRs from chamber experiments using the maximum concentration method and the appearance time method.

References

  1. 1.

    Spracklen, D. V. et al. The contribution of boundary layer nucleation events to total particle concentrations on regional and global scales. Atmos. Chem. Phys. 6, 5631–5648 (2006).

    Article  CAS  Google Scholar 

  2. 2.

    Yu, F. et al. Spatial distributions of particle number concentrations in the global troposphere: Simulations, observations, and implications for nucleation mechanisms. J. Geophy. Res. 115, D17205 (2010).

    Article  CAS  Google Scholar 

  3. 3.

    Spracklen, D. V. et al. Contribution of particle formation to global cloud condensation nuclei concentrations. Geophy. Res. Lett. 35, L06808 (2008).

  4. 4.

    Kerminen, V. M. et al. Cloud condensation nuclei production associated with atmospheric nucleation: a synthesis based on existing literature and new results. Atmos. Chem. Phys. 12, 12037–12059 (2012).

    Article  CAS  Google Scholar 

  5. 5.

    Guo, S. et al. Elucidating severe urban haze formation in China. Proc. Natl Acad. Sci. USA 111, 17373–17378 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Jiang, J. K. et al. First measurements of neutral atmospheric cluster and 1-2 nm particle number size distributions during nucleation events. Aerosol Sci. Technol. 45, ii–v (2011).

    Article  CAS  Google Scholar 

  7. 7.

    Kulmala, M. et al. Direct observations of atmospheric aerosol nucleation. Science 339, 943–946 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Zhang, R., Khalizov, A., Wang, L., Hu, M. & Xu, W. Nucleation and growth of nanoparticles in the atmosphere. Chem. Rev. 112, 1957–2011 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Kerminen, V.-M. et al. Atmospheric new particle formation and growth: review of field observations. Environ. Res. Lett. 13, 103003 (2018).

    Article  CAS  Google Scholar 

  10. 10.

    Chu, B. et al. Atmospheric new particle formation in China. Atmos. Chem. Phys. 19, 115–138 (2019).

    Article  CAS  Google Scholar 

  11. 11.

    Akimoto, H., Sakamaki, F., Hoshino, M., Inoue, G. & Okuda, M. Photochemical ozone formation in propylene-nitrogen oxide-dry air system. Environ. Sci. 13, 53–58 (1979).

    Article  CAS  Google Scholar 

  12. 12.

    Alfarra, M. R. et al. A mass spectrometric study of secondary organic aerosols formed from the photooxidation of anthropogenic and biogenic precursors in a reaction chamber. Atmos. Chem. Phys. 6, 5279–5293 (2006).

    Article  CAS  Google Scholar 

  13. 13.

    Atkinson, R., Carter, W. P. L., Darnall, K. R., Winer, A. M. & Pitts Jr., J. N. A smog chamber and modeling study of the gas phase NOx–air photooxidation of toluene and the cresols. 12, 779-836 (1980).

  14. 14.

    Barsanti, K. C., McMurry, P. H. & Smith, J. N. The potential contribution of organic salts to new particle growth. Atmos. Chem. Phys. 9, 2949–2957 (2009).

    Article  CAS  Google Scholar 

  15. 15.

    Becker, K. H. Overview on the Development of Chambers for the Study of Atmospheric Chemical Processes (Springer Netherlands, 2006).

  16. 16.

    Behnke, W., Holländer, W., Koch, W., Nolting, F. & Zetzsch, C. A smog chamber for studies of the photochemical degradation of chemicals in the presence of aerosols. Atmos. Environ. 22, 1113–1120 (1988).

    Article  CAS  Google Scholar 

  17. 17.

    Bruns, E. A. et al. Inter-comparison of laboratory smog chamber and flow reactor systems on organic aerosol yield and composition. Atmos. Meas. Technol. 8, 2315–2332 (2015).

    Article  CAS  Google Scholar 

  18. 18.

    Böge, O., Miao, Y., Plewka, A. & Herrmann, H. Formation of secondary organic particle phase compounds from isoprene gas-phase oxidation products: an aerosol chamber and field study. Atmos. Environ. 40, 2501–2509 (2006).

    Article  CAS  Google Scholar 

  19. 19.

    Carter, W. P. L., Atkinson, R., Winer, A. M. & Pitts, J. N. Jr. Experimental investigation of chamber-dependent radical sources. Int. J. Chem. Kinet. 14, 1071–1103 (1982).

    Article  CAS  Google Scholar 

  20. 20.

    Carter, W. P. L. et al. A new environmental chamber for evaluation of gas-phase chemical mechanisms and secondary aerosol formation. Atmos. Environ. 39, 7768–7788 (2005).

    Article  CAS  Google Scholar 

  21. 21.

    Dodge, M. C. Chemical oxidant mechanisms for air quality modeling: critical review. Atmos. Environ. 34, 2103–2130 (2000).

    Article  CAS  Google Scholar 

  22. 22.

    Donahue, N. M. et al. Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions. Proc. Natl Acad. Sci. USA 109, 13503–13508 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Ehn, M. et al. A large source of low-volatility secondary organic aerosol. Nature 506, 476–479 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Hallquist, M. et al. The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos. Chem. Phys. 9, 5155–5236 (2009).

    Article  CAS  Google Scholar 

  25. 25.

    Hess, G. D., Carnovale, F., Cope, M. E. & Johnson, G. M. The evaluation of some photochemical smog reaction mechanisms—I. Temperature and initial composition effects. Atmos. Environ. A Gen. Top. 26, 625–641 (1992).

    Article  Google Scholar 

  26. 26.

    Hoffmann, T. et al. Formation of organic aerosols from the oxidation of biogenic hydrocarbons. J. Atmos. Chem. 26, 189–222 (1997).

    Article  CAS  Google Scholar 

  27. 27.

    Jeffries, H., Kamens, R., Sexron, K. & Gerhardt, A. Outdoor smog chamber experiments to test photochemical models. Final report May 78–May 81 (North Carolina University at Chapel Hill School of Public Health, 1982).

  28. 28.

    Jimenez, J. L. et al. Evolution of organic aerosols in the atmosphere. Science 326, 1525–1529 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Kalberer, M., Sax, M. & Samburova, V. Molecular size evolution of oligomers in organic aerosols collected in urban atmospheres and generated in a smog chamber. Environ. Sci. Technol. 40, 5917–5922 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Kroll, J. H., Ng, N. L., Murphy, S. M., Flagan, R. C. & Seinfeld, J. H. Secondary organic aerosol formation from isoprene photooxidation under high-NOx conditions. Geophys. Res. Lett. 32, L18808 (2005).

    Article  CAS  Google Scholar 

  31. 31.

    Kroll, J. H. et al. Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds. J. Geophys. Res. 110, D23207 (2005).

    Article  CAS  Google Scholar 

  32. 32.

    Leskinen, A. P., Kulmala, M. & Lehtinen, K. E. J. Growth of nucleation mode particles: source rates of condensable vapour in a smog chamber. Atmos. Environ. 42, 7405–7411 (2008).

    Article  CAS  Google Scholar 

  33. 33.

    Martín-Reviejo, M. & Wirtz, K. Is benzene a precursor for secondary organic aerosol? Environ. Sci. Technol. 39, 1045–1054 (2005).

    Article  CAS  Google Scholar 

  34. 34.

    McFiggans, G. et al. Secondary organic aerosol reduced by mixture of atmospheric vapours. Nature 565, 587–593 (2019).

    Article  CAS  Google Scholar 

  35. 35.

    McMurry, P. H. Photochemical aerosol formation from SO2: a theoretical analysis of smog chamber data. J. Colloid Interf. Sci. 78, 513–527 (1980).

    Article  CAS  Google Scholar 

  36. 36.

    Ng, N. L. et al. Secondary organic aerosol formation from m-xylene, toluene, and benzene. Atmos. Chem. Phys. 7, 3909–3922 (2007).

    Article  CAS  Google Scholar 

  37. 37.

    Nordin, E. Z. et al. Secondary organic aerosol formation from idling gasoline passenger vehicle emissions investigated in a smog chamber. Atmos. Chem. Phys. 13, 6101–6116 (2013).

    Article  CAS  Google Scholar 

  38. 38.

    O’Dowd, C. D. et al. Marine aerosol formation from biogenic iodine emissions. Nature 417, 632 (2002).

    Article  CAS  Google Scholar 

  39. 39.

    Odum, J. R. et al. Gas/particle partitioning and secondary organic aerosol yields. Environ. Sci. Technol. 30, 2580–2585 (1996).

    Article  CAS  Google Scholar 

  40. 40.

    Pandis, S. N., Paulson, S. E., Seinfeld, J. H. & Flagan, R. C. Aerosol formation in the photooxidation of isoprene and β-pinene. Atmos. Environ. A Gen. Top. 25, 997–1008 (1991).

    Article  Google Scholar 

  41. 41.

    Platt, S. M. et al. Secondary organic aerosol formation from gasoline vehicle emissions in a new mobile environmental reaction chamber. Atmos. Chem. Phys. 13, 9141–9158 (2013).

    Article  CAS  Google Scholar 

  42. 42.

    Riva, M. et al. Chemical transformations in monoterpene-derived organic aerosol enhanced by inorganic composition. npj Clim. Atmos. Sci. 2, 2 (2019).

    Article  CAS  Google Scholar 

  43. 43.

    Simonaitis, R., Meagher, J. F. & Bailey, E. M. Evaluation of the condensed carbon bond (CB-IV) mechanism against smog chamber data at low VOC and NOx concentrations. Atmos. Environ. 31, 27–43 (1997).

    Article  CAS  Google Scholar 

  44. 44.

    Smith, J. N. et al. Observations of aminium salts in atmospheric nanoparticles and possible climatic implications. Proc. Natl Acad. Sci. USA 107, 6634–6639 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Tritscher, T. et al. Volatility and hygroscopicity of aging secondary organic aerosol in a smog chamber. Atmos. Chem. Phys. 11, 11477–11496 (2011).

    Article  CAS  Google Scholar 

  46. 46.

    Wang, X. et al. Design and characterization of a smog chamber for studying gas-phase chemical mechanisms and aerosol formation. Atmos. Meas. Technol. 7, 301–313 (2014).

    Article  CAS  Google Scholar 

  47. 47.

    Weitkamp, E. A., Sage, A. M., Pierce, J. R., Donahue, N. M. & Robinson, A. L. Organic aerosol formation from photochemical oxidation of diesel exhaust in a smog chamber. Environ. Sci. Technol. 41, 6969–6975 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Zhang, X. et al. Influence of vapor wall loss in laboratory chambers on yields of secondary organic aerosol. Proc. Natl Acad. Sci. USA 111, 5802–7 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Zhao, J. et al. Observation of neutral sulfuric acid-amine containing clusters in laboratory and ambient measurements. Atmos. Chem. Phys. 11, 10823–10836 (2011).

    Article  CAS  Google Scholar 

  50. 50.

    Garnier, J. P. & Mirabel, P. Experimental study of nucleation in binary mixtures: the methanol–ethanol, methanol‐n‐propanol, and ethanol‐n‐propanol systems. J. Chem. Phys. 77, 2035–2037 (1982).

    Article  CAS  Google Scholar 

  51. 51.

    Viisanen, Y., Kulmala, M. & Laaksonen, A. Experiments on gas–liquid nucleation of sulfuric acid and water. J. Chem. Phys. 107, 920–926 (1997).

    Article  CAS  Google Scholar 

  52. 52.

    Ball, S., Hanson, D., Eisele, F. & McMurry, P. Laboratory studies of particle nucleation: initial results for H2SO4, H2O, and NH3 vapors. J. Geophys. Res-Atmos. 104, 23709–23718 (1999).

    Article  CAS  Google Scholar 

  53. 53.

    Mirabel, P. & Clavelin, J. L. Experimental study of nucleation in binary mixtures: the nitric acid–water and sulfuric acid–water systems. J. Chem. Phys. 68, 5020–5027 (1978).

    Article  CAS  Google Scholar 

  54. 54.

    Kirkby, J. et al. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 476, 429–433 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Dawson, M. L. et al. Simplified mechanism for new particle formation from methanesulfonic acid, amines, and water via experiments and ab initio calculations. Proc. Natl Acad. Sci. USA 109, 18719–18724 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Ezell, M. et al. A new aerosol flow system for photochemical and thermal studies of tropospheric aerosols. Aerosol Sci. Technol. 44, 329–338 (2010).

    Article  CAS  Google Scholar 

  57. 57.

    Jimenez, J. L. et al. New particle formation from photooxidation of diiodomethane (CH2I2). J. Geophys. Res. 108, 4318 (2003).

    Article  CAS  Google Scholar 

  58. 58.

    Zhang, R. et al. Atmospheric new particle formation enhanced by organic acids. Science 304, 1487–1490 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Berndt, T., Böge, O., Stratmann, F., Heintzenberg, J. & Kulmala, M. Rapid formation of sulfuric acid particles at near-atmospheric conditions. Science 307, 698–700 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Berndt, T., Böge, O. & Stratmann, F. Formation of atmospheric H2SO4/H2O particles in the absence of organics: a laboratory study. Geophys. Res. Lett. 33, L15817 (2006).

    Article  CAS  Google Scholar 

  61. 61.

    Benson, D. R., Young, L.-H., Kameel, F. R. & Lee, S.-H. Laboratory-measured nucleation rates of sulfuric acid and water binary homogeneous nucleation from the SO2 + OH reaction. Geophys. Res. Lett. 35, L11801 (2008).

    Article  CAS  Google Scholar 

  62. 62.

    Berndt, T. et al. SO2 oxidation products other than H2SO4 as a trigger of new particle formation. Part 1: laboratory investigations. Atmos. Chem. Phys. 8, 6365–6374 (2008).

    Article  CAS  Google Scholar 

  63. 63.

    Young, L. H. et al. Laboratory studies of H2SO4/H2O binary homogeneous nucleation from the SO2+OH reaction: evaluation of the experimental setup and preliminary results. Atmos. Chem. Phys. 8, 4997–5016 (2008).

    Article  CAS  Google Scholar 

  64. 64.

    Berndt, T. et al. Laboratory study on new particle formation from the reaction OH + SO2: influence of experimental conditions, H2O vapour, NH3 and the amine tert-butylamine on the overall process. Atmos. Chem. Phys. 10, 7101–7116 (2010).

    Article  CAS  Google Scholar 

  65. 65.

    Brus, D., Hyvärinen, A. P., Viisanen, Y., Kulmala, M. & Lihavainen, H. Homogeneous nucleation of sulfuric acid and water mixture: experimental setup and first results. Atmos. Chem. Phys. 10, 2631–2641 (2010).

    Article  CAS  Google Scholar 

  66. 66.

    Duplissy, J. et al. Results from the CERN pilot CLOUD experiment. Atmos. Chem. Phys. 10, 1635–1647 (2010).

    Article  CAS  Google Scholar 

  67. 67.

    Sipilä, M. et al. The role of sulfuric acid in atmospheric nucleation. Science 327, 1243–1246 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Wang, L. et al. Atmospheric nanoparticles formed from heterogeneous reactions of organics. Nat. Geosci. 3, 238 (2010).

    Article  CAS  Google Scholar 

  69. 69.

    Brus, D. et al. Homogenous nucleation of sulfuric acid and water at close to atmospherically relevant conditions. Atmos. Chem. Phys. 11, 5277–5287 (2011).

    Article  CAS  Google Scholar 

  70. 70.

    Kiendler-Scharr, A. et al. New particle formation in forests inhibited by isoprene emissions. Nature 461, 381–384 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Benson, D. R., Yu, J. H., Markovich, A. & Lee, S. H. Ternary homogeneous nucleation of H2SO4, NH3, and H2O under conditions relevant to the lower troposphere. Atmos. Chem. Phys. 11, 4755–4766 (2011).

    Article  CAS  Google Scholar 

  72. 72.

    Yu, H., McGraw, R. & Lee, S.-H. Effects of amines on formation of sub-3 nm particles and their subsequent growth. Geophys. Res. Lett. 39, L02807 (2012).

    Article  Google Scholar 

  73. 73.

    Zollner, J. H. et al. Sulfuric acid nucleation: power dependencies, variation with relative humidity, and effect of bases. Atmos. Chem. Phys. 12, 4399–4411 (2012).

    Article  CAS  Google Scholar 

  74. 74.

    Almeida, J. et al. Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere. Nature 502, 359–363 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Schobesberger, S. et al. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules. Proc. Natl Acad. Sci. USA 110, 17223–17228 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Jen, C. N., McMurry, P. H. & Hanson, D. R. Stabilization of sulfuric acid dimers by ammonia, methylamine, dimethylamine, and trimethylamine. J. Geophys. Res. Atmos. 119, 7502–7514 (2014).

    Article  CAS  Google Scholar 

  77. 77.

    Riccobono, F. et al. Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles. Science 344, 717–721 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Glasoe, W. A. et al. Sulfuric acid nucleation: an experimental study of the effect of seven bases. J. Geophys. Res. Atmos. 120, 1933–1950 (2015).

    Article  CAS  Google Scholar 

  79. 79.

    Chen, H. et al. New particle formation and growth from methanesulfonic acid, trimethylamine and water. Phys. Chem. Chem. Phys. 17, 13699–13709 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Chen, H., Varner, M. E., Gerber, R. B. & Finlayson-Pitts, B. J. Reactions of methanesulfonic acid with amines and ammonia as a source of new particles in air. J. Phys. Chem. B 120, 1526–1536 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Jen, C. N., Bachman, R., Zhao, J., McMurry, P. H. & Hanson, D. R. Diamine-sulfuric acid reactions are a potent source of new particle formation. Geophys. Res. Lett. 43, 867–873 (2016).

    Article  CAS  Google Scholar 

  82. 82.

    Lehtipalo, K. et al. The effect of acid-base clustering and ions on the growth of atmospheric nano-particles. Nat. Commun. 7, 11594 (2016).

  83. 83.

    Yu, H. et al. Laboratory observations of temperature and humidity dependencies of nucleation and growth rates of sub-3 nm particles. J. Geophys. Res. Atmos. 122, 1919–1929 (2017).

    Article  Google Scholar 

  84. 84.

    Chen, H. & Finlayson-Pitts, B. J. New particle formation from methanesulfonic acid and amines/ammonia as a function of temperature. Environ. Sci. Technol. 51, 243–252 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Tröstl, J. et al. The role of low-volatility organic compounds in initial particle growth in the atmosphere. Nature 533, 527–531 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Dal Maso, M. et al. A chamber study of the influence of boreal BVOC emissions and sulfuric acid on nanoparticle formation rates at ambient concentrations. Atmos. Chem. Phys. 16, 1955–1970 (2016).

    Article  CAS  Google Scholar 

  87. 87.

    Boulon, J. et al. Sub-3 nm particles detection in a large photoreactor background: possible implications for new particles formation studies in a smog chamber. Aerosol Sci. Technol. 47, 153–157 (2013).

    Article  CAS  Google Scholar 

  88. 88.

    Wang, J. et al. Design of a new multi-phase experimental simulation chamber for atmospheric photosmog, aerosol and cloud chemistry research. Atmos. Meas. Technol. 4, 2465 (2011).

    Article  CAS  Google Scholar 

  89. 89.

    Pichelstorfer, L. et al. Resolving nanoparticle growth mechanisms from size- and time-dependent growth rate analysis. Atmos. Chem. Phys. 18, 1307–1323 (2018).

    Article  CAS  Google Scholar 

  90. 90.

    Kürten, A. et al. New particle formation in the sulfuric acid-dimethylamine-water system: reevaluation of CLOUD chamber measurements and comparison to an aerosol nucleation and growth model. Atmos. Chem. Phys. 18, 845–863 (2018).

    Article  CAS  Google Scholar 

  91. 91.

    Hao, L. Q. et al. New particle formation from the oxidation of direct emissions of pine seedlings. Atmos. Chem. Phys. 9, 8121–8137 (2009).

    Article  CAS  Google Scholar 

  92. 92.

    Joutsensaari, J. et al. Nanoparticle formation by ozonolysis of inducible plant volatiles. Atmos. Chem. Phys. 5, 1489–1495 (2005).

    Article  CAS  Google Scholar 

  93. 93.

    Paulsen, D. et al. Secondary organic aerosol formation by irradiation of 1, 3, 5-trimethylbenzene−NOx−H2O in a new reaction chamber for atmospheric chemistry and physics. Environ. Sci. Technol. 39, 2668–2678 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Metzger, A. et al. Evidence for the role of organics in aerosol particle formation under atmospheric conditions. Proc. Natl Acad. Sci. USA 107, 6646–6651 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Riccobono, F. et al. Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth. Atmos. Chem. Phys. 12, 9427–9439 (2012).

    Article  CAS  Google Scholar 

  96. 96.

    Duplissy, J. et al. Effect of ions on sulfuric acid-water binary particle formation: 2. Experimental data and comparison with QC-normalized classical nucleation theory. J. Geophys. Res. Atmos. 121, 1752–1775 (2016).

    Article  CAS  Google Scholar 

  97. 97.

    Wagner, R. et al. The role of ions in new particle formation in the CLOUD chamber. Atmos. Chem. Phys. 17, 15181–15197 (2017).

    Article  CAS  Google Scholar 

  98. 98.

    Kirkby, J. et al. Ion-induced nucleation of pure biogenic particles. Nature 533, 521–526 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Smith, J. N., Moore, K. F., McMurry, P. H. & Eisele, F. L. Atmospheric measurements of sub-20 nm diameter particle chemical composition by thermal desorption chemical ionization mass spectrometry. Aerosol Sci. Technol. 38, 100–110 (2004).

    Article  CAS  Google Scholar 

  100. 100.

    Smith, J. N., Winkler, P. M., Zhao, J. & McMurry, P. H. Exploring the role of organics in atmospheric new particle formation with chemical ionization mass spectrometry. Abstr. Pap. Am. Chem. Soc. 242, ENVR 428 (2011).

    Google Scholar 

  101. 101.

    Smith, J. N. & Rathbone, G. J. Carboxylic acid characterization in nanoparticles by thermal desorption chemical ionization mass spectrometry. Int. J. Mass. Spectrom. 274, 8–13 (2008).

    Article  CAS  Google Scholar 

  102. 102.

    Lehtipalo, K. et al. Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors. Sci. Adv. 4, eaau5363 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Dunne, E. M. et al. Global atmospheric particle formation from CERN CLOUD measurements. Science 354, 1119–1124 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Gordon, H. et al. Causes and importance of new particle formation in the present-day and preindustrial atmospheres. J. Geophys. Res. Atmos. 122, 8739–8760 (2017).

    Article  Google Scholar 

  105. 105.

    Gordon, H. et al. Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation. Proc. Natl Acad. Sci. USA 113, 12053–12058 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Cziczo, D. J. et al. Ice nucleation by surrogates of Martian mineral dust: what can we learn about Mars without leaving Earth? 118, 1945-1954 (2013).

  107. 107.

    Berndt, T. et al. Enhancement of atmospheric H2SO4/H2O nucleation: organic oxidation products versus amines. Atmos. Chem. Phys. 14, 751–764 (2014).

    Article  CAS  Google Scholar 

  108. 108.

    McMurry, P. H. & Grosjean, D. Gas and aerosol wall losses in Teflon film smog chambers. Environ. Sci. Technol. 19, 1176–1182 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Liu, D.-L. in Developments in Surface Contamination and Cleaning (eds Kohli, R. & Mittal, K. L.) 1–56 (William Andrew Publishing, 2010).

  110. 110.

    Schwantes, R. H. et al. in Advances in Atmospheric Chemistry 1–93 (World Scientific, 2017).

  111. 111.

    Neitola, K. et al. Total sulfate vs. sulfuric acid monomer concenterations in nucleation studies. Atmos. Chem. Phys. 15, 3429–3443 (2015).

    Article  CAS  Google Scholar 

  112. 112.

    Stolzenburg, D. et al. Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range. Proc. Natl Acad. Sci. USA 115, 9122–9127 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Wildt, J. et al. Suppression of new particle formation from monoterpene oxidation by NOx. Atmos. Chem. Phys. 14, 2789–2804 (2014).

    Article  CAS  Google Scholar 

  114. 114.

    Kulmala, M. et al. Measurement of the nucleation of atmospheric aerosol particles. Nat. Protoc. 7, 1651–1667 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Kerminen, V. M. & Kulmala, M. Analytical formulae connecting the “real” and the “apparent” nucleation rate and the nuclei number concentration for atmospheric nucleation events. J. Aerosol Sci. 33, 609–622 (2002).

    Article  CAS  Google Scholar 

  116. 116.

    Lehtinen, K. E. J., Dal Maso, M., Kulmala, M. & Kerminen, V. M. Estimating nucleation rates from apparent particle formation rates and vice versa: revised formulation of the Kerminen-Kulmala equation. J. Aerosol Sci. 38, 988–994 (2007).

    Article  CAS  Google Scholar 

  117. 117.

    Korhonen, H., Kerminen, V.-M., Kokkola, H. & Lehtinen, K. E. J. Estimating atmospheric nucleation rates from size distribution measurements: analytical equations for the case of size dependent growth rates. J. Aerosol Sci. 69, 13–20 (2014).

    Article  CAS  Google Scholar 

  118. 118.

    Kürten, A., Williamson, C., Almeida, J., Kirkby, J. & Curtius, J. On the derivation of particle nucleation rates from experimental formation rates. Atmos. Chem. Phys. 15, 4063–4075 (2015).

    Article  CAS  Google Scholar 

  119. 119.

    Brines, M. et al. Traffic and nucleation events as main sources of ultrafine particles in high-insolation developed world cities. Atmos. Chem. Phys. 15, 5929–5945 (2015).

    Article  CAS  Google Scholar 

  120. 120.

    Cai, R. et al. Estimating the influence of transport on aerosol size distributions during new particle formation events. Atmos. Chem. Phys. 18, 16587–16599 (2018).

    Article  CAS  Google Scholar 

  121. 121.

    Dada, L. et al. Refined classification and characterization of atmospheric new-particle formation events using air ions. Atmos. Chem. Phys. 18, 17883–17893 (2018).

    Article  CAS  Google Scholar 

  122. 122.

    Leino, K. et al. Vertical profiles of sub-3 nm particles over the boreal forest. Atmos. Chem. Phys. 19, 4127–4138 (2019).

    Article  CAS  Google Scholar 

  123. 123.

    Kerminen, V. M., Lehtinen, K. E. J., Anttila, T. & Kulmala, M. Dynamics of atmospheric nucleation mode particles: a timescale analysis. Tellus B 56, 135–146 (2004).

    Article  Google Scholar 

  124. 124.

    Cai, R., Mirme, S., Jiang, J. & Kangasluoma, J. Parameters to determine the optimum performance of electrical mobility spectrometers for measurement of particle size distributions down to the cluster size. J. Aerosol Sci. 127, 102–115 (2018).

    Article  CAS  Google Scholar 

  125. 125.

    Mordas, G. et al. Design and performance characteristics of a condensation particle counter UF-02proto. Boreal Environ. Res. 10, 543–552 (2005).

    Google Scholar 

  126. 126.

    Collins, A. M., Dick, W. D. & Romay, F. J. A new coincidence correction method for condensation particle counters. Aerosol Sci. Technol. 47, 177–182 (2013).

    Article  CAS  Google Scholar 

  127. 127.

    Kebabian, P. L., Herndon, S. C. & Freedman, A. Detection of nitrogen dioxide by cavity attenuated phase shift spectroscopy. Anal. Chem. 77, 724–728 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Rohrer, F. & Brüning, D. Surface NO and NO2 mixing ratios measured between 30 N and 30 S in the Atlantic region. J. Atmos. Chem. 15, 253–267 (1992).

    Article  CAS  Google Scholar 

  129. 129.

    Hansel, A. et al. Proton transfer reaction mass spectrometry: on-line trace gas analysis at the ppb level. Int. J. Mass. Spectrom. 149, 609–619 (1995).

    Article  Google Scholar 

  130. 130.

    Blake, R. S., Monks, P. S. & Ellis, A. M. Proton-transfer reaction mass spectrometry. Chem. Rev. 109, 861–896 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Yuan, B. et al. Proton-transfer-reaction mass spectrometry: applications in atmospheric sciences. Chem. Rev. 117, 13187–13229 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Jokinen, T. et al. Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF. Atmos. Chem. Phys. 12, 4117–4125 (2012).

    Article  CAS  Google Scholar 

  133. 133.

    Kürten, A., Rondo, L., Ehrhart, S. & Curtius, J. Calibration of a chemical ionization mass spectrometer for the measurement of gaseous sulfuric acid. Phys. Chem. A 116, 6375–6386 (2012).

    Article  CAS  Google Scholar 

  134. 134.

    Heinritzi, M. et al. Characterization of the mass-dependent transmission efficiency of a CIMS. Atmos. Meas. Technol. 9, 1449–1460 (2016).

    Article  CAS  Google Scholar 

  135. 135.

    Lee, B. H. et al. An iodide-adduct high-resolution time-of-flight chemical-ionization mass spectrometer: application to atmospheric inorganic and organic compounds. Environ. Sci. Technol. 48, 6309–6317 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. 136.

    Brophy, P. & Farmer, D. K. Clustering, methodology, and mechanistic insights into acetate chemical ionization using high-resolution time-of-flight mass spectrometry. Atmos. Meas. Technol. 9, 3969–3986 (2016).

    Article  CAS  Google Scholar 

  137. 137.

    Breitenlechner, M. et al. PTR3: an instrument for studying the lifecycle of reactive organic carbon in the atmosphere. Anal. Chem. 89, 5824–5831 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. 138.

    Krechmer, J. et al. Evaluation of a new reagent-ion source and focusing ion–molecule reactor for use in proton-transfer-reaction mass spectrometry. Anal. Chem. 90, 12011–12018 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. 139.

    Yao, L. et al. Detection of atmospheric gaseous amines and amides by a high-resolution time-of-flight chemical ionization mass spectrometer with protonated ethanol reagent ions. Atmos. Chem. Phys. 16, 14527–14543 (2016).

    Article  CAS  Google Scholar 

  140. 140.

    Zheng, J. et al. Measurement of atmospheric amines and ammonia using the high resolution time-of-flight chemical ionization mass spectrometry. Atmos. Environ. 102, 249–259 (2015).

    Article  CAS  Google Scholar 

  141. 141.

    Simon, M. et al. Detection of dimethylamine in the low pptv range using nitrate chemical ionization atmospheric pressure interface time-of-flight (CI-APi-TOF) mass spectrometry. Atmos. Meas. Technol. 9, 2135–2145 (2016).

    Article  CAS  Google Scholar 

  142. 142.

    Praplan, A. P., Bianchi, F., Dommen, J. & Baltensperger, U. Dimethylamine and ammonia measurements with ion chromatography during the CLOUD4 campaign. Atmos. Meas. Technol. 5, 2161–2167 (2012).

    Article  CAS  Google Scholar 

  143. 143.

    Junninen, H. et al. A high-resolution mass spectrometer to measure atmospheric ion composition. Atmo. s. Meas. Technol. 3, 1039–1053 (2010).

    Article  CAS  Google Scholar 

  144. 144.

    Frege, C. et al. Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation. Atmos. Chem. Phys. 18, 65–79 (2018).

    Article  CAS  Google Scholar 

  145. 145.

    Bianchi, F. et al. The role of highly oxygenated molecules (HOMs) in determining the composition of ambient ions in the boreal forest. Atmos. Chem. Phys. 17, 13819–13831 (2017).

    Article  CAS  Google Scholar 

  146. 146.

    Ehn, M. et al. Composition and temporal behavior of ambient ions in the boreal forest. Atmos. Chem. Phys. 10, 8513–8530 (2010).

    Article  CAS  Google Scholar 

  147. 147.

    Loza, C. L. et al. Characterization of vapor wall loss in laboratory chambers. Environ. Sci. Technol. 44, 5074–5078 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. 148.

    Brauers, T. et al. Investigation of the formaldehyde differential absorption cross section at high and low spectral resolution in the simulation chamber SAPHIR. Atmos. Chem. Phys. 7, 3579–3586 (2007).

    Article  CAS  Google Scholar 

  149. 149.

    Sumner, A. L. et al. in Dynamics of Mercury Pollution on Regional and Global Scales: Atmospheric Processes and Human Exposures Around the World (eds Pirrone, N. & Mahaffey, K. R.) 193–212 (Springer, 2005).

  150. 150.

    Grieshop, A. P., Logue, J. M., Donahue, N. M. & Robinson, A. L. Laboratory investigation of photochemical oxidation of organic aerosol from wood fires 1: measurement and simulation of organic aerosol evolution. Atmos. Chem. Phys. 9, 1263–1277 (2009).

    Article  CAS  Google Scholar 

  151. 151.

    Byrne, M. A., Goddard, A. J. H., Lange, C. & Roed, J. Stable tracer aerosol deposition measurements in a test chamber. J. Aerosol Sci. 26, 645–653 (1995).

    Article  CAS  Google Scholar 

  152. 152.

    Presto, A. A., Gordon, T. D. & Robinson, A. L. Primary to secondary organic aerosol: evolution of organic emissions from mobile combustion sources. Atmos. Chem. Phys. 14, 5015–5036 (2014).

    Article  CAS  Google Scholar 

  153. 153.

    Hunter, J. F., Carrasquillo, A. J., Daumit, K. E. & Kroll, J. H. Secondary organic aerosol formation from acyclic, monocyclic, and polycyclic alkanes. Environ. Sci. Technol. 48, 10227–10234 (2014).

    Article  CAS  Google Scholar 

  154. 154.

    Chhabra, P. S., Flagan, R. C. & Seinfeld, J. H. Elemental analysis of chamber organic aerosol using an aerodyne high-resolution aerosol mass spectrometer. Atmos. Chem. Phys. 10, 4111–4131 (2010).

    Article  CAS  Google Scholar 

  155. 155.

    Saathoff, H. et al. Temperature dependence of yields of secondary organic aerosols from the ozonolysis of α-pinene and limonene. Atmos. Chem. Phys. 9, 1551–1577 (2009).

    Article  CAS  Google Scholar 

  156. 156.

    Ye, P. et al. Vapor wall loss of semi-volatile organic compounds in a Teflon chamber. Aerosol Sci. Technol. 50, 822–834 (2016).

    Article  CAS  Google Scholar 

  157. 157.

    Carter, W. P. L., Heo, G., Cocker III, D. R. & Nakao, S. SOA formation: chamber study and model development. Final report to the California Air Resources Board, contract no. 08-326 https://intra.engr.ucr.edu/~carter/SAPRC/pmchrpt.pdf (2012).

  158. 158.

    Cocker, D. R., Flagan, R. C. & Seinfeld, J. H. State-of-the-art chamber facility for studying atmospheric aerosol chemistry. Environ. Sci. Technol. 35, 2594–2601 (2001).

    Article  CAS  Google Scholar 

  159. 159.

    McMurry, P. H. & Rader, D. J. Aerosol wall losses in electrically charged chambers. Aerosol Sci. Technol. 4, 249–268 (1985).

    Article  CAS  Google Scholar 

  160. 160.

    Bloss, C. et al. Development of a detailed chemical mechanism (MCMv3.1) for the atmospheric oxidation of aromatic hydrocarbons. Atmos. Chem. Phys. 5, 641–664 (2005).

    Article  CAS  Google Scholar 

  161. 161.

    Saathoff, H. et al. The AIDA soot aerosol characterisation campaign 1999. J. Aerosol Sci. 34, 1277–1296 (2003).

    Article  CAS  Google Scholar 

  162. 162.

    Kulkarni, P., Baron, P. A. & Willeke, K. Aerosol Measurement: Principles, Techniques, and Applications (Wiley, 2011).

  163. 163.

    Ezell, M. J. et al. A new aerosol flow system for photochemical and thermal studies of tropospheric aerosols. Aerosol Sci. Technol. 44, 329–338 (2010).

    Article  CAS  Google Scholar 

  164. 164.

    Stratmann, F. et al. Laboratory studies and numerical simulations of cloud droplet formation under realistic supersaturation conditions. J. Atmos. Ocean Technol. 21, 876–887 (2004).

    Article  Google Scholar 

  165. 165.

    Lehtinen, K. E. J. & Kulmala, M. A model for particle formation and growth in the atmosphere with molecular resolution in size. Atmos. Chem. Phys. 3, 251–257 (2003).

    Article  CAS  Google Scholar 

  166. 166.

    Lehtipalo, K. et al. Methods for determining particle size distribution and growth rates between 1 and 3 nm using the Particle Size Magnifier. Boreal Environ. Res. 19, 215–236 (2014).

    Google Scholar 

  167. 167.

    Kuang, C. et al. Size and time-resolved growth rate measurements of 1 to 5 nm freshly formed atmospheric nuclei. Atmos. Chem. Phys. 12, 3573–3589 (2012).

    Article  CAS  Google Scholar 

  168. 168.

    Lehtinen, K. E. J., Rannik, Ü., Petäjä, T., Kulmala, M. & Hari, P. Nucleation rate and vapor concentration estimations using a least squares aerosol dynamics method. J. Geophys. Res. Atmos. 109, D21209 (2004).

  169. 169.

    Verheggen, B. & Mozurkewich, M. An inverse modeling procedure to determine particle growth and nucleation rates from measured aerosol size distributions. Atmos. Chem. Phys. 6, 2927–2942 (2006).

    Article  CAS  Google Scholar 

  170. 170.

    Yli-Juuti, T. et al. Growth rates of nucleation mode particles in Hyytiälä during 2003–2009: variation with particle size, season, data analysis method and ambient conditions. Atmos. Chem. Phys. 11, 12865–12886 (2011).

    Article  CAS  Google Scholar 

  171. 171.

    Leppä, J., Anttila, T., Kerminen, V. M., Kulmala, M. & Lehtinen, K. E. J. Atmospheric new particle formation: real and apparent growth of neutral and charged particles. Atmos. Chem. Phys. 11, 4939–4955 (2011).

    Article  CAS  Google Scholar 

  172. 172.

    Li, C. & McMurry, P. H. Errors in nanoparticle growth rates inferred from measurements in chemically reacting aerosol systems. Atmos. Chem. Phys. 18, 8979–8993 (2018).

    Article  CAS  Google Scholar 

  173. 173.

    Vanhanen, J. et al. Particle size magnifier for nano-CN detection. Aerosol Sci. Technol. 45, 533–542 (2011).

    Article  CAS  Google Scholar 

  174. 174.

    Stolzenburg, M. R. & McMurry, P. H. An ultrafine aerosol condensation nucleus counter. Aerosol Sci. Technol. 14, 48–65 (1991).

    Article  CAS  Google Scholar 

  175. 175.

    Hering, S. V. et al. Detection near 1-nm with a laminar-flow, water-based condensation particle counter. Aerosol Sci. Technol. 51, 354-362 (2017).

  176. 176.

    Wimmer, D. et al. Performance of diethylene glycol-based particle counters in the sub-3 nm size range. Atmos. Meas. Technol. 6, 1793–1804 (2013).

    Article  Google Scholar 

  177. 177.

    Wang, S. C. & Flagan, R. C. Scanning electrical mobility spectrometer. Aerosol Sci. Technol. 13, 230–240 (1990).

    Article  CAS  Google Scholar 

  178. 178.

    Mirme, S. & Mirme, A. The mathematical principles and design of the NAIS—a spectrometer for the measurement of cluster ion and nanometer aerosol size distributions. Atmos. Meas. Technol. 6, 1061–1071 (2013).

    Article  Google Scholar 

  179. 179.

    Stolzenburg, D., Steiner, G. & Winkler, P. M. A DMA-train for precision measurement of sub-10 nm aerosol dynamics. Atmos. Meas. Technol. 10, 1639–1651 (2017).

    Article  Google Scholar 

  180. 180.

    Jiang, J. K., Chen, M. D., Kuang, C. A., Attoui, M. & McMurry, P. H. Electrical mobility spectrometer using a diethylene glycol condensation particle counter for measurement of aerosol size distributions down to 1 nm. Aerosol Sci. Technol. 45, 510–521 (2011).

    Article  CAS  Google Scholar 

  181. 181.

    Kangasluoma, J. et al. Heterogeneous nucleation onto ions and neutralized ions: insights into sign-preference. J. Phys. Chem. C. 120, 7444–7450 (2016).

    Article  CAS  Google Scholar 

  182. 182.

    Kangasluoma, J. et al. Sub-3 nm particle size and composition dependent response of a nano-CPC battery. Atmos. Meas. Technol. 7, 689–700 (2014).

    Article  CAS  Google Scholar 

  183. 183.

    Winkler, P. M. et al. Heterogeneous nucleation experiments bridging the scale from molecular ion clusters to nanoparticles. Science 319, 1374–1377 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. 184.

    Kupc, A. et al. Laboratory characterization of a new nano-water-based CPC 3788 and performance comparison to an ultrafine butanol-based CPC 3776. Aerosol Sci. Technol. 47, 183–191 (2013).

    Article  CAS  Google Scholar 

  185. 185.

    Kulmala, M. et al. The condensation particle counter battery (CPCB): a new tool to investigate the activation properties of nanoparticles. J. Aerosol Sci. 38, 289–304 (2007).

    Article  CAS  Google Scholar 

  186. 186.

    Kangasluoma, J. & Kontkanen, J. On the sources of uncertainty in the sub-3 nm particle concentration measurement. J. Aerosol Sci. 112, 34–51 (2017).

    Article  CAS  Google Scholar 

  187. 187.

    Wimmer, D. et al. Technical note: using DEG-CPCs at upper tropospheric temperatures. Atmos. Chem. Phys. 15, 7547–7555 (2015).

    Article  CAS  Google Scholar 

  188. 188.

    Gormley, P. G. & Kennedy, M. Diffusion from a stream flowing through a cylindrical tube. Proc. R. Ir. Acad. A Math. Phys. Sci. 52, 163–169 (1949).

    Google Scholar 

  189. 189.

    Kangasluoma, J. et al. Operation of the Airmodus A11 nano Condensation Nucleus Counter at various inlet pressures and various operation temperatures, and design of a new inlet system. Atmos. Meas. Technol. 9, 2977–2988 (2016).

    Article  CAS  Google Scholar 

  190. 190.

    Fu, Y., Xue, M., Cai, R., Kangasluoma, J. & Jiang, J. Theoretical and experimental analysis of the core sampling method: reducing diffusional losses in aerosol sampling line. Aerosol Sci. Technol. 53, 793–801 (2019).

    Article  CAS  Google Scholar 

  191. 191.

    Seinfeld, J. H. & Pandis, S. N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, 2012).

  192. 192.

    Poling, B. E., Prausnitz, J. M. & O’Connell, J. P. The Properties of Gases and Liquids 5 (McGraw-Hill, 2001).

  193. 193.

    Seinfeld, J. H. & Pandis, S. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd edn (Wiley, 2016).

  194. 194.

    Mikkonen, S. et al. Technical note: effects of uncertainties and number of data points on line fitting—a case study on new particle formation. Atmos. Chem. Phys. 19, 12531–12543 (2019).

    Article  CAS  Google Scholar 

  195. 195.

    Press, W. H., Flannery, B. P., Teukolsky, S. & Vettering, W. T. Numerical Recipes—The Art of Scientific Computing (Cambridge University Press, 1986).

  196. 196.

    Tellinghuisen, A. Monte Carlo study of precision, bias, inconsistency, and non-gaussian distributions in nonlinear least squares. J. Phys. Chem. A 104, 2834–2844 (2000).

    Article  CAS  Google Scholar 

  197. 197.

    Manninen, H. E. et al. Long-term field measurements of charged and neutral clusters using neutral cluster and air ion spectrometer (NAIS). Boreal Environ. Res. 14, 591–605 (2009).

    CAS  Google Scholar 

  198. 198.

    Bates, D. in Advances in Atomic and Molecular Physics Vol. 20 1–40 (Elsevier, 1985).

  199. 199.

    Franchin, A. et al. Experimental investigation of ion-ion recombination under atmospheric conditions. Atmos. Chem. Phys. 15, 7203–7216 (2015).

    Article  CAS  Google Scholar 

  200. 200.

    Hoppel, W. A. & Frick, G. M. Ion aerosol attachment coefficients and the steady-state charge-distribution on aerosols in a bipolar ion environment. Aerosol Sci. Technol. 5, 1–21 (1986).

    Article  CAS  Google Scholar 

  201. 201.

    Hering, S. V., Stolzenburg, M. R., Quant, F. R., Oberreit, D. R. & Keady, P. B. A laminar-flow, water-based condensation particle counter (WCPC). Aerosol Sci. Technol. 39, 659–672 (2005).

    Article  CAS  Google Scholar 

  202. 202.

    Mirme, A. et al. A wide-range multi-channel air ion spectrometer. Boreal Environ. Res. 12, 247–264 (2007).

    CAS  Google Scholar 

  203. 203.

    Kürten, A. et al. Neutral molecular cluster formation of sulfuric acid-dimethylamine observed in real time under atmospheric conditions. Proc. Natl Acad. Sci. USA 111, 15019–15024 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. 204.

    Tiszenkel, L. et al. Temperature effects on sulfuric acid aerosol nucleation and growth: initial results from the TANGENT study. Atmos. Chem. Phys. 19, 8915–8929 (2019).

    Article  CAS  Google Scholar 

  205. 205.

    Benson, D. R., Erupe, M. E. & Lee, S.-H. Laboratory-measured H2SO4-H2O-NH3 ternary homogeneous nucleation rates: initial observations. Geophys. Res. Lett. 36, L15818 (2009).

  206. 206.

    Erupe, M. E., Viggiano, A. A. & Lee, S. H. The effect of trimethylamine on atmospheric nucleation involving H2SO4. Atmos. Chem. Phys. 11, 4767–4775 (2011).

    Article  CAS  Google Scholar 

  207. 207.

    Krasnomowitz, J. M. et al. Growth of Aitken mode ammonium sulfate particles by α-pinene ozonolysis. Aerosol Sci. Technol. 53, 406–418 (2019).

    Article  CAS  Google Scholar 

  208. 208.

    Stangl, C. M. et al. Sulfur dioxide modifies aerosol particle formation and growth by ozonolysis of monoterpenes and isoprene. J. Geophys. Res. Atmos. 124, 4800–4811 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The CLOUD community is gratefully acknowledged for invaluable discussions. Partial funding was provided by the Academy of Finland (project nos. 316114 and 325647). The work was also supported by the Academy of Finland via the BioFuture2025 project ‘Nano BioMass’, an Academy professor project of M.K. and the Center of Excellence in Atmospheric Sciences (project no. 307331), the European Commission via ACTRIS2 (project no. 654109) and the European Research Council via advanced grant ATM-GTP (project no. 742206).

Author information

Affiliations

Authors

Contributions

L.D., K. Lehtipalo, J. Kontkanen, T.N., K. Lehtinen, V.-M.K. and M.K. contributed to the development of the technique for calculating Jdp and GR. R.B., L.A., J.D., T.P., C.Y., B.C. and J. Kangasluoma contributed to development of the technique for calibrating and minimizing losses during particle measurement. All authors contributed to the writing of this protocol and to the scientific discussions related to it.

Corresponding authors

Correspondence to Markku Kulmala or Juha Kangasluoma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Véronique Riffault and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Lehtipalo, K. et al. Sci. Adv. 4, eaau5363 (2018): https://doi.org/10.1126/sciadv.aau5363

Wagner, R. et al. Atmos. Chem. Phys. 17, 15181–15197 (2017): https://doi.org/10.5194/acp-17-15181-2017

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dada, L., Lehtipalo, K., Kontkanen, J. et al. Formation and growth of sub-3-nm aerosol particles in experimental chambers. Nat Protoc 15, 1013–1040 (2020). https://doi.org/10.1038/s41596-019-0274-z

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing