Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Facilitating chemical and biochemical experiments with electronic microcontrollers and single-board computers

Abstract

Since the advent of modern science, researchers have had to rely on their technical skills or the support of specialized workshops to construct analytical instruments. The notion of the ‘fourth industrial revolution’ promotes construction of customized systems by individuals using widely available, inexpensive electronic modules. This protocol shows how chemists and biochemists can utilize a broad range of microcontroller boards (MCBs) and single-board computers (SBCs) to improve experimental designs and address scientific questions. We provide seven example procedures for laboratory routines that can be expedited by implementing this technology: (i) injection of microliter-volume liquid plugs into microscale capillaries for low-volume assays; (ii) transfer of liquid extract to a mass spectrometer; (iii) liquid–gas extraction of volatile organic compounds (called ‘fizzy extraction’), followed by mass spectrometric detection; (iv) monitoring of experimental conditions over the Internet cloud in real time; (v) transfer of analytes to a mass spectrometer via a liquid microjunction interface, data acquisition, and data deposition into the Internet cloud; (vi) feedback control of a biochemical reaction; and (vii) optimization of sample flow rate in direct-infusion mass spectrometry. The protocol constitutes a primer for chemists and biochemists who would like to take advantage of MCBs and SBCs in daily experimentation. It is assumed that the readers have not attended any courses related to electronics or programming. Using the instructions provided in this protocol and the cited material, readers should be able to assemble simple systems to facilitate various procedures performed in chemical and biochemical laboratories in 1–2 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Functions and applications of MCBs and SBCs in (bio)chemical research.
Fig. 2: Procedure 1: using Arduino MCB to control injection of microliter-volume liquid plugs into microscale capillaries for low-volume assays.
Fig. 3: Procedure 2: using Ardbox PLC (Arduino Leonardo) to control transfer of liquid extract from a liquid–liquid extraction system to an APCI-MS system in real time.
Fig. 4: Procedure 3: using chipKIT MCB to perform FE.
Fig. 5: Procedure 4: using Particle MCB to transmit experimental data to the cloud in real time.
Fig. 6: Procedure 5: using RPI SBC to control extract transfer from a liquid microextraction device to mass spectrometer to acquire data and to upload the acquired data to the cloud.
Fig. 7: Procedure 6: using BBB SBC to compensate for substrate depletion in a biochemical reaction (feedback control).
Fig. 8: Procedure 7: using IE SBC to optimize sample flow rate in direct-infusion MS.
Fig. 9: Photographs of the electronic systems described in Procedures 1–7.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The computer code used in this protocol is provided as Supplementary Data 17.

References

  1. Bolas, B. D. A Handbook of Laboratory Glass-Blowing (Routledge, 1921).

  2. Schwab, K. The Fourth Industrial Evolution (Penguin, 2017).

  3. Urban, P. L. Universal electronics for miniature and automated chemical assays. Analyst 140, 963–975 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Prabhu, G. R. D. & Urban, P. L. The dawn of unmanned analytical laboratories. Trends Anal. Chem. 88, 41–52 (2017).

    Article  CAS  Google Scholar 

  5. Urban, P. L. Prototyping instruments for the chemical laboratory using inexpensive electronic modules. Angew. Chem. Int. Ed. 57, 11074–11077 (2018).

    Article  CAS  Google Scholar 

  6. Caramelli, D. et al. Networking chemical robots for reaction multitasking. Nat. Commun. 9, 3406 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Steiner, S. et al. Organic synthesis in a modular robotic system driven by a chemical programming language. Science 363, eaav2211 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Hu, J.-B., Chen, T.-R., Chen, Y.-C. & Urban, P. L. Microcontroller-assisted compensation of adenosine triphosphate levels: instrument and method development. Sci. Rep. 5, 8135 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hu, J.-B. et al. A compact 3D-printed interface for coupling open digital microchips with Venturi easy ambient sonic-spray ionization MS. Analyst 140, 1495–1501 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Yang, H.-H., Dutkiewicz, E. P. & Urban, P. L. Kinetic study of continuous liquid-liquid extraction of wine with real-time detection. Anal. Chim. Acta 1034, 85–91 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Hsieh, K.-T., Liu, P.-H. & Urban, P. L. Automated on-line liquid–liquid extraction system for temporal mass spectrometric analysis of dynamic samples. Anal. Chim. Acta 894, 35–43 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Chang, C.-H. & Urban, P. L. Fizzy extraction of volatile and semivolatile compounds into the gas phase. Anal. Chem. 88, 8735–8740 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Chen, S.-Y. & Urban, P. L. On-line monitoring of Soxhlet extraction by chromatography and mass spectrometry to reveal temporal extract profiles. Anal. Chim. Acta 881, 74–81 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Ting, H., Hu, J.-B., Hsieh, K.-T. & Urban, P. L. A pinch-valve interface for automated sampling and monitoring of dynamic processes by gas chromatography-mass spectrometry. Anal. Methods 6, 4652–4660 (2014).

    Article  CAS  Google Scholar 

  15. Prabhu, G. R. D., Witek, H. A. & Urban, P. L. Programmable flow rate scanner for evaluating detector sensitivity regime. Sens. Actuators B Chem. 282, 992–998 (2019).

    Article  CAS  Google Scholar 

  16. Prabhu, G. R. D., Witek, H. & Urban, P. L. Telechemistry: monitoring chemical reactions via the cloud using the Particle Photon Wi-Fi module. React. Chem. Eng. 4, 1616–1622 (2019).

    Article  CAS  Google Scholar 

  17. Holmes, N. et al. Self-optimisation of the final stage in the synthesis of EGFR kinase inhibitor AZD9291 using an automated flow reactor. React. Chem. Eng. 1, 366–371 (2016).

    Article  CAS  Google Scholar 

  18. Coley, C. W. et al. A robotic platform for flow synthesis of organic compounds informed by AI planning. Science 365, eaax1566 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Fitzpatrick, D. E., Maujean, T., Evans, A. C. & Ley, S. V. Across‐the‐world automated optimization and continuous‐flow synthesis of pharmaceutical agents operating through a cloud‐based server. Angew. Chem. Int. Ed. 57, 15128–15132 (2018).

    Article  CAS  Google Scholar 

  20. Jensen, P. A., Dougherty, B. V., Moutinho, T. J. Jr. & Papin, J. A. Miniaturized plate readers for low-cost, high-throughput phenotypic screening. SLAS Technol. 20, 51–55 (2015).

    Google Scholar 

  21. Banzi, M. & Shiloh, M. Make: Getting Started with Arduino: The Open Source Electronics Prototyping Platform. Edn. 3 (Maker Media, Sebastopol, 2014).

    Google Scholar 

  22. Stankovic, J. A. Research directions for the Internet of Things. IEEE Internet Things J. 1, 3–9 (2014).

    Article  Google Scholar 

  23. Čolaković, A. & Hadžialić, M. Internet of Things (IoT): a review of enabling technologies, challenges, and open research issues. Comput. Netw. 144, 17–39 (2018).

    Article  Google Scholar 

  24. Deitel, H. M. & Deitel, B. The processor. in Computers and Data Processing (Academic Press, 1985).

  25. Pregl, F. Die quantitative organische Mikroanalyse (Springer, 1923).

  26. Baker, M. A., Cerniglia, G. J. & Zaman, A. Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Anal. Biochem. 190, 360–365 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. Manz, A., Graber, N. & Widmer, H. Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sens. Actuators B Chem. 1, 244–248 (1990).

    Article  CAS  Google Scholar 

  28. Regnier, F. E., Patterson, D. H. & Harmon, B. J. Electrophoretically-mediated microanalysis (EMMA). Trends Anal. Chem. 14, 177–181 (1995).

    CAS  Google Scholar 

  29. Okhonin, V., Liu, X. & Krylov, S. N. Transverse diffusion of laminar flow profiles to produce capillary nanoreactors. Anal. Chem. 77, 5925–5929 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Danieley, J. E. A continuous liquid-liquid extraction apparatus. J. Chem. Educ. 30, 179 (1953).

    Article  CAS  Google Scholar 

  31. Yang, H.-C., Chang, C.-H. & Urban, P. L. Fizzy extraction of volatile organic compounds combined with atmospheric pressure chemical ionization quadrupole mass spectrometry. J. Vis. Exp. 2017, e56008 (2017).

    Google Scholar 

  32. Yang, H.-C., Chang, C.-M. & Urban, P. L. Automation of fizzy extraction enabled by inexpensive open-source modules. Heliyon 5, e01639 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yang, H.-C. & Urban, P. L. On-line coupling of fizzy extraction with gas chromatography. Anal. Bioanal. Chem. 411, 1-10 (2019).

  34. Ley, S. V., Fitzpatrick, D. E., Ingham, R. J. & Nikbin, N. The Internet of Chemical Things. Beilstein Mag. 1. https://doi.org/10.3762/bmag.2 (2015).

  35. Arruda, M. A. Z. Trends in Sample Preparation. (Nova Science, Hauppauge, 2007).

    Google Scholar 

  36. Cody, R. B., Laramée, J. A. & Durst, H. D. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal. Chem. 77, 2297–2302 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Takáts, Z., Wiseman, J. M., Gologan, B. & Cooks, R. G. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306, 471–473 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Roach, P. J., Laskin, J. & Laskin, A. Nanospray desorption electrospray ionization: an ambient method for liquid-extraction surface sampling in mass spectrometry. Analyst 135, 2233–2236 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Van Berkel, G. J. & Kertesz, V. Application of a liquid extraction based sealing surface sampling probe for mass spectrometric analysis of dried blood spots and mouse whole-body thin tissue sections. Anal. Chem. 81, 9146–9152 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Van Berkel, G. J. & Kertesz, V. Electrochemically initiated tagging of thiols using an electrospray ionization based liquid microjunction surface sampling probe two-electrode cell. Rapid Commun. Mass Spectrom. 23, 1380–1386 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Ferber, D. Microbes made to order. Science 303, 158–161 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Khalil, A. S. & Collins, J. J. Synthetic biology: applications come of age. Nat. Rev. Genet. 11, 367–379 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Covey, T. Analytical characteristics of the electrospray ionization process. ACS Symp. Ser. 619, 21–59 (1996).

    Article  CAS  Google Scholar 

  44. Urban, P. L. Clarifying misconceptions about mass and concentration sensitivity. J. Chem. Educ. 93, 984–987 (2016).

    Article  CAS  Google Scholar 

  45. Marginean, I. et al. Analytical characterization of the electrospray ion source in the nanoflow regime. Anal. Chem. 80, 6573–6579 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gouveia, M. J. et al. Mass spectrometry techniques in the survey of steroid metabolites as potential disease biomarkers: a review. Metabolism 62, 1206–1217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Covey, T. R. & Pinto, D. Nanoelectrospray ionization development: LC/MS, CE/MS application. In: Applied Electrospray Mass Spectrometry: Practical Spectroscopy Series Vol. 32 (eds. Pramanik, B. N., Ganguly, A. K. & Gross, M. L.) 105-148 Dekker, New York, 2002).

  48. Savitzky, A. & Golay, M. J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639 (1964).

    Article  CAS  Google Scholar 

  49. Grinias, J. P., Whitfield, J. T., Guetschow, E. D. & Kennedy, R. T. An inexpensive, open-source USB Arduino data acquisition device for chemical instrumentation. J. Chem. Educ. 93, 1316–1319 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hughes, J. M. Arduino: A Technical Reference: A Handbook for Technicians, Engineers, and Makers. (O’Reilly, Sebastopol, 2016).

    Google Scholar 

  51. Kallol, B. R. C. Learn Arduino Prototyping in 10 Days (Packt, Birmingham, 2017).

  52. Vinck, M. Getting Started with Soldering: A Hands-On Guide to Making Electrical and Mechanical Connections (Maker Media, San Francisco, 2017).

  53. Dutkiewicz, E. P., Chiu, H.-Y. & Urban, P. L. Micropatch-arrayed pads for non-invasive spatial and temporal profiling of topical drugs on skin surface. J. Mass Spectrom. 50, 1321–1325 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Trinder, P. Determination of blood glucose using an oxidase peroxidase system with a non-carcinogenic chromogen. J. Clin. Pathol. 22, 158–161 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Goodall, D. M. & Urban, P. L. Lab-on-capillary: a versatile format for nanolitre scale chemistry and biochemistry. International Labmate 02/07 (2007). https://www.envirotech-online.com/article/chromatography/1/unassigned-independant-article/lab-on-capillary-a-versatile-format-for-nanolitre-scale-chemistry-and-biochemistry/50

  56. Coutinho, M. S., Morais, C. L. M., Neves, A. C. O., Menezes, F. G. & Lima, K. M. G. Colorimetric determination of ascorbic acid based on its interfering effect in the enzymatic analysis of glucose: an approach using smartphone image analysis. J. Braz. Chem. Soc. 28, 2500–2505 (2017).

    CAS  Google Scholar 

  57. Urban, P. L., Goodall, D. M., Bergström, E. T. & Bruce, N. C. 1,4-Benzoquinone-based electrophoretic assay for glucose oxidase. Anal. Biochem. 359, 35–39 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Ziegler, H. Flavourings: Production, Composition, Applications, Regulations 2nd edn (Wiley-VCH, 2007).

  59. Zheng, L.-Y. et al. Aroma volatile compounds from two fresh pineapple varieties in China. Int. J. Mol. Sci. 13, 7383–7392 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Urban, P. L., Chen, Y.-C. & Wang, Y.-S. Time-Resolved Mass Spectrometry: From Concept to Applications (Wiley, 2016).

  61. Dixon, J. & Hewett, E. W. Factors affecting apple aroma/flavour volatile concentration: a review. N. Z. J. Crop Hortic. Sci. 28, 155–173 (2000).

    Article  CAS  Google Scholar 

  62. Coote, N. & Kirsop, B. H. Factors responsible for the decrease in pH during beer fermentations. J. Inst. Brew. 82, 149–153 (1976).

    Article  CAS  Google Scholar 

  63. Otterstedt, K. et al. Switching the mode of metabolism in the yeast Saccharomyces cerevisiae. EMBO Rep. 5, 532–537 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pijanowska, D. G. et al. The pH-detection of triglycerides. Sens. Actuators B Chem. 78, 263–266 (2001).

    Article  CAS  Google Scholar 

  65. Shumate, J., Baillargeon, P., Spicer, T. P. & Scampavia, L. IoT for real-time measurement of high-throughput liquid dispensing in laboratory environments. SLAS Technol. 23, 440–447 (2018).

    PubMed  Google Scholar 

  66. Neil, W., Zipp, G., Nemeth, G., Russo, M. F. & Nirschl, D. S. End-to-end sample tracking in the laboratory using a custom Internet of Things device. SLAS Technol. 23, 412–422 (2018).

    PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the Ministry of Science and Technology (MOST), Taiwan (grant nos. 104-2628-M-007-006-MY4, 108-2113-M-007-017, and 108-3017-F-007-003); the National Chiao Tung University; the National Tsing Hua University (grant no. 108QI009E1); the Frontier Research Center on Fundamental and Applied Sciences of Matters; and the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project established by the Ministry of Education (MOE), Taiwan.

Author information

Authors and Affiliations

Authors

Contributions

G.R.D.P., T.-H.Y., C.-Y.H., C.-P.S., C.-M.C., P.-H.L., and H.-T.N. all took part in acquiring, analyzing, and interpreting the data and writing the manuscript. P.L.U. conceptualized the experimental work, secured the research infrastructure, and took part in interpreting the data and writing the manuscript.

Corresponding author

Correspondence to Pawel L. Urban.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Leroy Cronin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Yang, H.-H., Dutkiewicz, E. P. & Urban, P. L. Anal. Chim. Acta 1034, 85–91 (2018): https://doi.org/10.1016/j.aca.2018.06.072

Chang, C.-H. & Urban, P. L. Anal. Chem. 88, 8735–8740 (2016): https://pubs.acs.org/doi/10.1021/acs.analchem.6b02074

Prabhu, G. R. D., Witek, H. A. & Urban, P. L. Sens. Actuators B Chem. 282, 992–998 (2019): https://doi.org/10.1016/j.snb.2018.11.033

Supplementary information

Supplementary Information

Supplementary Figs. 1–22.

Reporting Summary

Supplementary Data 1

Scripts used in example Procedure 1

Supplementary Data 2

Scripts used in example Procedure 2

Supplementary Data 3

Scripts used in example Procedure 3

Supplementary Data 4

Scripts used in example Procedure 4

Supplementary Data 5

Scripts used in example Procedure 5

Supplementary Data 6

Scripts used in example Procedure 6

Supplementary Data 7

Scripts used in example Procedure 7

Supplementary Video 1

Soldering wires and electronic components.

Supplementary Video 2

Procedure 1: securing tubing onto the holder and setting up the in-capillary assay experiment.

Supplementary Video 3

Procedure 2: setting up the CLLE experiment.

Supplementary Video 4

Procedure 3: setting up the sample chamber for fizzy extraction.

Supplementary Video 5

Procedure 4: setting up the chamber with sensors to monitor yeast growth.

Supplementary Video 6

Procedure 5: setting up the circuit, assembling LMJ-SSP.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabhu, G.R.D., Yang, TH., Hsu, CY. et al. Facilitating chemical and biochemical experiments with electronic microcontrollers and single-board computers. Nat Protoc 15, 925–990 (2020). https://doi.org/10.1038/s41596-019-0272-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-019-0272-1

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing