Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Chemically defined and xenogeneic-free culture method for human epidermal keratinocytes on laminin-based matrices

Abstract

The basal keratinocyte progenitor cells in cultured epithelial autografts (CEAs) regenerate human epidermis after transplantation, a curative therapy for severe burns and, recently, diseases with epidermal loss, such as junctional epidermolysis bullosa (EB). Although a culturing technique for skin keratinocytes was developed four decades ago, the xenogeneic nature of that conventional CEA culture system restricts its use to the treatment of critical and life-threatening cases, such as severe burns on >30% of total body surface area and EB. In the present protocol, we describe how to implement a defined, xeno-free culture system that supports long-term ex vivo expansion of functional human epidermal keratinocytes. Skin-specific basement membrane proteins called laminins play important roles in the maintenance of phenotypic integrity and in supporting the survival of keratinocytes that are adhered to them. This fully human keratinocyte culture system is ‘regulatory friendly’ and increases the potential of epithelial cellular therapy, which can be expanded to treat less severe burns and other skin defects, such as chronic diabetic wounds. It takes between 7 and 14 d to obtain an initial culture. Conservatively, a secondary culture from the primary culture can be expanded up to 20-fold within 4–5 d once cells reach confluency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Workflow from freshly isolated keratinocyte culture to animal transplantation.
Fig. 2: Flow diagram of fibrin mat preparation.
Fig. 3: Representative images of human epidermal keratinocytes cultured on the LN system.
Fig. 4: Cross-section of cultured human epidermal keratinocyte monolayer on fibrin coated with LN-511 or LN-421.

Similar content being viewed by others

Zixuan Zhao, Xinyi Chen, … Hanry Yu

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Tjin, M. S. et al. Biologically relevant laminin as chemically defined and fully human platform for human epidermal keratinocyte culture. Nat. Commun. 9, 4432 (2018).

    PubMed  PubMed Central  Google Scholar 

  2. Gilchrest, B. A., Nemore, R. E. & Maciag, T. Growth of human keratinocytes on fibronectin-coated plates. Cell Biol. Int. Rep. 4, 1009–1016 (1980).

    CAS  PubMed  Google Scholar 

  3. Lamb, R. & Ambler, C. A. Keratinocytes propagated in serum-free, feeder-free culture conditions fail to form stratified epidermis in a reconstituted skin model. PLOS One 8, e52494 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Xu, Z.-Z., Li, Z.-J., Du, L.-X., Li, J. & Wang, L.-Y. Using bovine pituitary extract to increase proliferation of keratinocytes and maintain their phenotype in vitro. Int. J. Opthalmol. 6, 758–765 (2013).

    Google Scholar 

  5. Sun, T. et al. Developments in xenobiotic-free culture of human keratinocytes for clinical use. Wound Repair Regen. 12, 626–634 (2004).

    PubMed  Google Scholar 

  6. Rheinwald, J. G. & Green, H. Serial cultivation of strains of human epidemal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6, 331–343 (1975).

    CAS  PubMed  Google Scholar 

  7. Bisson, F. et al. Irradiated human dermal fibroblasts are as efficient as mouse fibroblasts as a feeder layer to improve human epidermal cell culture lifespan. Int. J. Mol. Sci. 14, 4684–4704 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Boyce, S. & Ham, R. Calcium-regulated differentiation of normal human epidermal keratinocytes in chemically defined clonal culture and serum-free serial culture. J. Invest. Dermatol. 81(1 Suppl), 33s–40s (1983).

    CAS  PubMed  Google Scholar 

  9. Bullock, A. J., Higham, M. C. & MacNeil, S. Use of human fibroblasts in the development of a xenobiotic-free culture and delivery system for human keratinocytes. Tissue Eng. 12, 245–255 (2006).

    CAS  PubMed  Google Scholar 

  10. De Corte, P. et al. Feeder layer- and animal product-free culture of neonatal foreskin keratinocytes: improved performance, usability, quality and safety. Cell Tissue Bank 13, 175–189 (2012).

    CAS  PubMed  Google Scholar 

  11. Panacchia, L. et al. Nonirradiated human fibroblasts and irradiated 3T3-J2 murine fibroblasts as a feeder layer for keratinocyte growth and differentiation in vitro on a fibrin substrate. Cells Tissues Organs 191, 21–35 (2010).

    PubMed  Google Scholar 

  12. O’Connor, N. E., Mulliken, J. B., Banks-Schlegel, S., Kehinde, O. & Green, H. Grafting of burns with cultured epithelium prepared from autologous epidermal cells. Lancet 1, 75–78 (1981).

    Google Scholar 

  13. Higham, M. C. et al. Development of a stable chemically defined surface for the culture of human keratinocytes under serum-free conditions for clinical use. Tissue Eng. 9, 919–930 (2003).

    CAS  PubMed  Google Scholar 

  14. Hynds, R. E., Bonfanti, P. & Janes, S. M. Regenerating human epithelia with cultured stem cells: feeder cells, organoids and beyond. EMBO Mol. Med. 10, 139–150 (2018).

    CAS  PubMed  Google Scholar 

  15. Chugh, R. M., Chaturvedi, M. & Yerneni, L. K. An evaluation of the choice of feeder cell growth arrest for the production of cultured epidermis. Burns 41, 1788–1795 (2015).

    PubMed  Google Scholar 

  16. Tenchini, M. L., Ranzati, C. & Malcovati, M. Culture techniques for human keratinocytes. Burns 18(Suppl 1), S11–15 (1992).

    PubMed  Google Scholar 

  17. Weisman, G. A. et al. Growth inhibition of transformed mouse fibroblasts by adenine nucleotides occurs via generation of extracellular adenosine. J. Biol. Chem. 263, 12367–12372 (1988).

    CAS  PubMed  Google Scholar 

  18. Green, H. The birth of therapy with cultured cells. BioEssays 30, 897–903 (2008).

    PubMed  Google Scholar 

  19. Jones, J. C. R., Goldman, A. E., Steinert, P. M., Yuspa, S. & Goldman, R. D. Dynamic aspects of the supramolecular organization of intermediate filament networks in cultural epidermal cells. Cell Motil. 2, 197–213 (1982).

    CAS  PubMed  Google Scholar 

  20. Dawson, R. A., Goberdhan, N. J., Freedlander, E. & MacNeil, S. Influence of extracellular matrix proteins on human keratinocyte attachment, proliferation and transfer to a dermal wound model. Burns 22, 93–100 (1996).

    CAS  PubMed  Google Scholar 

  21. Coolen, N. A. et al. Culture of keratinocytes for transplantation without the need of feeder layer cells. Cell Transplant. 16, 649–661 (2007).

    PubMed  Google Scholar 

  22. Mujaj, S., Manton, K., Upton, Z. & Richards, S. Serum-free primary human fibroblast and keratinocyte coculture. Tissue Eng. Part A 16, 1407–1420 (2010).

    CAS  PubMed  Google Scholar 

  23. Boyce, S. T., Christianson, D. J. & Hansbrough, J. F. Structure of collagen-GAG dermal skin substitute optimized for cultured human epidermal keratinocytes. J. Biomed. Mater. Res. 12, 939–957 (1988).

    Google Scholar 

  24. Limat, A., Hunziker, T., Boillat, C., Bayreuther, K. & Noser, F. Post-mitotic human dermal fibroblasts efficiently support the growth of human follicular keratinocytes. J. Invest. Dermatol. 92, 758–762 (1989).

    CAS  PubMed  Google Scholar 

  25. Jubin, K., Martin, Y., Lawrence-Watt, D. J. & Sharpe, J. R. A fully autologous co-culture system utilising non-irradiated autologous fibroblasts to support the expansion of human keratinocytes for clinical use. Cytotechnology 63, 655–662 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Waelti, E. R. et al. Co-culture of human keratinocytes on post-mitotic human dermal fibroblast feeder cells: production of large amounts of interleukin 6. J. Invest. Dermatol. 98, 805–808 (1992).

    CAS  PubMed  Google Scholar 

  27. Ter Horst, B., Chouhan, G., Moiemen, N. S. & Grover, L. M. Advances in keratinocyte delivery in burn wound care. Adv. Drug Deliv. Rev. 123, 18–32 (2018).

    PubMed  PubMed Central  Google Scholar 

  28. Barrandon, Y., Li, V. & Green, H. New techniques for the grafting of cultured human epidermal cells onto athymic animals. J. Invest. Dermatol. 91, 315–318 (1988).

    CAS  PubMed  Google Scholar 

  29. Miner, J. H. & Yurchenco, P. D. Laminin functions in tissue morphogenesis. Annu. Rev. Cell Dev. Biol. 20, 255–284 (2004).

    CAS  PubMed  Google Scholar 

  30. Domogatskaya, A., Rodin, S. & Tryggvason, K. Functional diversity of laminins. Annu. Rev. Cell Dev. Biol. 28, 523–553 (2012).

    CAS  PubMed  Google Scholar 

  31. Yurchenco, P. D. Basement membranes: cell scaffoldings and signaling platforms. Cold Spring Harb. Perspect. Biol. 3, a004911 (2011).

    PubMed  PubMed Central  Google Scholar 

  32. Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

    CAS  PubMed  Google Scholar 

  33. Aberdam, D. et al. Herlitz’s junctional epidermolysis bullosa is linked to mutations in the gene (LAMC2) for the γ2 subunit of nicein/kalinin (LAMININ-5). Nat. Genet. 6, 299–304 (1994).

    CAS  PubMed  Google Scholar 

  34. Pulkkinen, L. et al. Mutations in the gamma 2 chain gene (LAMC2) of kalinin/laminin 5 in the junctional forms of epidermolysis bullosa. Nat. Genet. 6, 293–297 (1994).

    CAS  PubMed  Google Scholar 

  35. Pouliot, N., Saunders, N. A. & Kaur, P. Laminin 10/11: an alternative adhesive ligand for epidermal keratinocytes with a functional role in promoting proliferation and migration. Exp. Dermatol. 11, 387–397 (2002).

    CAS  PubMed  Google Scholar 

  36. Kortesmaa, J., Yurchenco, P. & Tryggvason, K. Recombinant laminin-8 (α4β1γ1). Production, purification,and interactions with integrins. J. Biol. Chem. 275, 14853–14859 (2000).

    CAS  PubMed  Google Scholar 

  37. Doi, M. et al. Recombinant human laminin-10 (α5β1γ1). Production, purification, and migration-promoting activity on vascular endothelial cells. J. Biol. Chem. 277, 12741–12748 (2002).

    CAS  PubMed  Google Scholar 

  38. Rodin, S. et al. Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xeno-free environment. Nat. Commun. 5, 3195 (2014).

    PubMed  Google Scholar 

  39. Parsons, S. F. et al. Lutheran blood group glycoprotein and its newly characterized mouse homologue specifically bind α5 chain-containing human laminin with high affinity. Blood 97, 312 (2001).

    CAS  PubMed  Google Scholar 

  40. Rodin, S., Antonsson, L., Hovatta, O. & Tryggvason, K. Monolayer culturing and cloning of human pluripotent stem cells on laminin-521–based matrices under xeno-free and chemically defined conditions. Nat. Protoc. 9, 2354–2368 (2014).

    CAS  PubMed  Google Scholar 

  41. Rodin, S. et al. Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat. Biotech. 28, 611–615 (2010).

    CAS  Google Scholar 

  42. Pellegrini, G. et al. The control of epidermal stem cells (holoclones) in the treatment of massive full-thickness burns with autologous keratinocytes cultured on fibrin. Transplantation 68, 868–879 (1999).

    CAS  PubMed  Google Scholar 

  43. Horch, R. E., Bannasch, H., Kopp, J., Andree, C. & Stark, G. B. Single-cell suspensions of cultured human keratinocytes in fibrin-glue reconstitute the epidermis. Cell Transplant. 7, 309–317 (1998).

    CAS  PubMed  Google Scholar 

  44. Chua, A. W. C. et al. In vitro evaluation of fibrin mat and Tegaderm™ wound dressing for the delivery of keratinocytes—implications of their use to treat burns. Burns 34, 175–180 (2008).

    CAS  PubMed  Google Scholar 

  45. Chua, A. W. C. et al. From skin allograft coverage to allograft–micrograft sandwich method: a retrospective review of severe burn patients who received conjunctive application of cultured epithelial autografts. Burns 44, 1302–1307 (2018).

    PubMed  Google Scholar 

  46. Meyer, A. A. et al. Antibody response to xenogeneic proteins in burned patients receiving cultured keratinocyte grafts. J. Trauma 28, 1054–1059 (1988).

    CAS  PubMed  Google Scholar 

  47. Martin, M. J., Muotri, A., Gage, F. & Varki, A. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat. Med. 11, 228–232 (2005).

    CAS  PubMed  Google Scholar 

  48. Ronfard, V., Rives, J. M., Neveux, Y., Carsin, H. & Barrandon, Y. Long-term regeneration of human epidermis on third degree burns transplanted with autologous cultured epithelium grown on a fibrin matrix. Transplantation 70, 1588–1598 (2000).

    CAS  PubMed  Google Scholar 

  49. Pellegrini, G. et al. Biological parameters determining the clinical outcome of autologous cultures of limbal stem cells. Regen. Med. 8, 553–567 (2013).

    CAS  PubMed  Google Scholar 

  50. Li, A., Pouliot, N., Redvers, R. & Kaur, P. Extensive tissue-regenerative capacity of neonatal human keratinocyte stem cells and their progeny. J. Clin. Invest. 113, 390–400 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are thankful to Assoc. Prof. Tan Bien Keem at Plastic, Reconstructive & Aesthetic Surgery, Singapore General Hospital for facilitating collection of skin samples. This study was supported by NMRC STaR Award grants (NMRC/STaR/0010/2012 and MOH-000052) to K.T. and an NMRC grant (NMRC/BNIG/2036/2015) awarded to A.W.C.C.

Author information

Authors and Affiliations

Authors

Contributions

M.S.T designed the protocol and all experimental procedures, wrote the article and prepared figures. A.W.C.C. and K.T. are both project co-leaders and assisted with the preparation of the article.

Corresponding authors

Correspondence to Alvin Wen Choong Chua or Karl Tryggvason.

Ethics declarations

Competing interests

K.T. is a shareholder of BioLamina.

Additional information

Peer review information Nature Protocols thanks Ellen Van den Bogaard and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related link

Key reference(s) using this protocol

Tjin, M. S. et al. Nat. Commun. 9, 4432 (2018): https://doi.org/10.1038/s41467-018-06934-3

Supplementary information

Supplementary Table 1

Antibodies used in the study

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tjin, M.S., Chua, A.W.C. & Tryggvason, K. Chemically defined and xenogeneic-free culture method for human epidermal keratinocytes on laminin-based matrices. Nat Protoc 15, 694–711 (2020). https://doi.org/10.1038/s41596-019-0270-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-019-0270-3

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing