Unraveling human adult hippocampal neurogenesis

Abstract

Adult neurogenesis occurs in a few selected regions of the mammalian brain. One such region is the hippocampus, the so-called gateway to memory, where adult hippocampal neurogenesis (AHN) occurs. Here, we provide a comprehensive description of the methods used in our laboratory to unambiguously detect a population of immature neurons in the human hippocampus until the 10th decade of life. The criteria used to refine and develop the current protocol include obtaining post-mortem human samples of remarkable quality and under tightly controlled conditions for immunohistochemistry (IHC) studies, optimizing tissue processing and histological procedures, establishing criteria to reliably validate antibody signal and performing unbiased stereological cell counts. Moreover, we provide a detailed description of the parameters that, in our view, should be reported in human AHN studies. The opposing results obtained by introducing slight variations in the methodological conditions should be considered by future studies that seek to increase our knowledge of this fascinating process. By applying simple and inexpensive tissue pre-treatments, this protocol, which can be completed in 7 days, might be applicable to a variety of IHC studies performed on other tissues of human (or animal) origin.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Experimental design.
Fig. 2: Experimental setup.
Fig. 3: Effect of fixation on the performance of different antibodies.
Fig. 4: Effects of variations in the histological procedures on staining with different antibodies in samples fixed in 4% PFA for 24 h at 4 °C.
Fig. 5: Effects of incubation with the autofluorescence eliminator reagent on the outcomes of the IHC.
Fig. 6: Image analysis.

Data availability

All data and/or analyses generated have been included in the paper.

References

  1. 1.

    Altman, J. Autoradiographic investigation of cell proliferation in the brains of rats and cats. Anat. Rec. 145, 573–591 (1963).

    CAS  Article  Google Scholar 

  2. 2.

    Kohler, S. J., Williams, N. I., Stanton, G. B., Cameron, J. L. & Greenough, W. T. Maturation time of new granule cells in the dentate gyrus of adult macaque monkeys exceeds six months. Proc. Natl Acad. Sci. USA 108, 10326–10331 (2011).

    CAS  Article  Google Scholar 

  3. 3.

    Eriksson, P. S. et al. Neurogenesis in the adult human hippocampus. Nat. Med. 4, 1313–1317 (1998).

    CAS  Article  Google Scholar 

  4. 4.

    Sahay, A. et al. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472, 466–470 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    Zhao, C., Teng, E. M., Summers, R. G. Jr., Ming, G. L. & Gage, F. H. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J. Neurosci. 26, 3–11 (2006).

    CAS  Article  Google Scholar 

  6. 6.

    Bischofberger, J. Young and excitable: new neurons in memory networks. Nat. Neurosci. 10, 273–275 (2007).

    CAS  Article  Google Scholar 

  7. 7.

    Marin-Burgin, A., Mongiat, L. A., Pardi, M. B. & Schinder, A. F. Unique processing during a period of high excitation/inhibition balance in adult-born neurons. Science 335, 1238–1242 (2012).

    CAS  Article  Google Scholar 

  8. 8.

    Braak, H. & Braak, E. [Morphology of Alzheimer disease]. Fortschr. Med. 108, 621–624 (1990).

    CAS  PubMed  Google Scholar 

  9. 9.

    Moreno-Jimenez, E. P. et al. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat. Med. 25, 554–560 (2019).

    CAS  Article  Google Scholar 

  10. 10.

    Knoth, R. et al. Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. PLOS One 5, e8809 (2010).

    Article  Google Scholar 

  11. 11.

    Boldrini, M. et al. Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell 22, 589–599.e5 (2018).

    CAS  Article  Google Scholar 

  12. 12.

    Tobin, M. K. et al. Human hippocampal neurogenesis persists in aged adults and Alzheimer’s disease patients. Cell Stem Cell 24, 974–982.e3 (2019).

    CAS  Article  Google Scholar 

  13. 13.

    Sorrells, S. F. et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 555, 377–381 (2018).

    CAS  Article  Google Scholar 

  14. 14.

    Cipriani, S. et al. Hippocampal radial glial subtypes and their neurogenic potential in human fetuses and healthy and Alzheimer’s disease adults. Cereb. Cortex 28, 2458–2478 (2018).

    Article  Google Scholar 

  15. 15.

    Evers, P., Uylings, H. B. & Suurmeijer, A. J. Antigen retrieval in formaldehyde-fixed human brain tissue. Methods 15, 133–140 (1998).

    CAS  Article  Google Scholar 

  16. 16.

    Dowson, J. H. The evaluation of autofluorescence emission spectra derived from neuronal lipopigment. J. Microsc. 128, 261–270 (1982).

    CAS  Article  Google Scholar 

  17. 17.

    Spalding, K. L. et al. Dynamics of hippocampal neurogenesis in adult humans. Cell 153, 1219–1227 (2013).

    CAS  Article  Google Scholar 

  18. 18.

    Tartt, A. N. et al. Considerations for assessing the extent of hippocampal neurogenesis in the adult and aging human brain. Cell Stem Cell 23, 782–783 (2018).

    CAS  Article  Google Scholar 

  19. 19.

    Manganas, L. N. et al. Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain. Science 318, 980–985 (2007).

    CAS  Article  Google Scholar 

  20. 20.

    Greenberg, D. A. & Jin, K. Neurodegeneration and neurogenesis: focus on Alzheimer’s disease. Curr. Alzheimer Res. 3, 25–28 (2006).

    CAS  Article  Google Scholar 

  21. 21.

    Spalding, K. L., Bhardwaj, R. D., Buchholz, B. A., Druid, H. & Frisen, J. Retrospective birth dating of cells in humans. Cell 122, 133–143 (2005).

    CAS  Article  Google Scholar 

  22. 22.

    Bao, A. M. & Swaab, D. F. The art of matching brain tissue from patients and controls for postmortem research. Handb. Clin. Neurol. 150, 197–217 (2018).

    Article  Google Scholar 

  23. 23.

    Boekhoorn, K., Joels, M. & Lucassen, P. J. Increased proliferation reflects glial and vascular-associated changes, but not neurogenesis in the presenile Alzheimer hippocampus. Neurobiol. Dis. 24, 1–14 (2006).

    CAS  Article  Google Scholar 

  24. 24.

    Braak, H., Alafuzoff, I., Arzberger, T., Kretzschmar, H. & Del Tredici, K. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol. 112, 389–404 (2006).

    Article  Google Scholar 

  25. 25.

    Thavarajah, R., Mudimbaimannar, V. K., Elizabeth, J., Rao, U. K. & Ranganathan, K. Chemical and physical basics of routine formaldehyde fixation. J. Oral. Maxillofac. Pathol. 16, 400–405 (2012).

    Article  Google Scholar 

  26. 26.

    Plumpe, T. et al. Variability of doublecortin-associated dendrite maturation in adult hippocampal neurogenesis is independent of the regulation of precursor cell proliferation. BMC Neurosci. 7, 77 (2006).

    Article  Google Scholar 

  27. 27.

    Gleeson, J. G., Lin, P. T., Flanagan, L. A. & Walsh, C. A. Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 23, 257–271 (1999).

    CAS  Article  Google Scholar 

  28. 28.

    Pikkarainen, M., Martikainen, P. & Alafuzoff, I. The effect of prolonged fixation time on immunohistochemical staining of common neurodegenerative disease markers. J. Neuropathol. Exp. Neurol. 69, 40–52 (2010).

    CAS  Article  Google Scholar 

  29. 29.

    Axthelm, M. K. & Krakowka, S. Immunocytochemical methods for demonstrating canine distemper virus antigen in aldehyde-fixed paraffin-embedded tissue. J. Virol. Methods 13, 215–229 (1986).

    CAS  Article  Google Scholar 

  30. 30.

    Guntern, R., Vallet, P. G., Bouras, C. & Constantinidis, J. An improved immunohistostaining procedure for peptides in human brain. Experientia 45, 159–161 (1989).

    CAS  Article  Google Scholar 

  31. 31.

    Leibnitz, L. & Wunscher, W. [The life-long deposition of intraneuronal lipofuscin in various sections of the human brain]. Anat. Anz. 121, 132–140 (1967).

    CAS  PubMed  Google Scholar 

  32. 32.

    Nishioka, N., Takahata, N. & Iizuka, R. Histochemical studies on the lipo-pigments in the nerve cells. A comparison with lipofuscin and ceroid pigment. Acta Neuropathol. 11, 174–181 (1968).

    CAS  Article  Google Scholar 

  33. 33.

    Llorens-Martin, M., Torres-Aleman, I. & Trejo, J. L. Pronounced individual variation in the response to the stimulatory action of exercise on immature hippocampal neurons. Hippocampus 16, 480–490 (2006).

    CAS  Article  Google Scholar 

  34. 34.

    Gundersen, H. J. Stereology of arbitrary particles. A review of unbiased number and size estimators and the presentation of some new ones, in memory of William R. Thompson. J. Microsc. 143, (3–45 (1986).

    Google Scholar 

  35. 35.

    Bendtsen, T. F. & Nyengaard, J. R. Unbiased estimation of particle number using sections—an historical perspective with special reference to the stereology of glomeruli. J. Microsc. 153, 93–102 (1989).

    CAS  Article  Google Scholar 

  36. 36.

    Howell, K., Hopkins, N. & McLoughlin, P. Combined confocal microscopy and stereology: a highly efficient and unbiased approach to quantitative structural measurement in tissues. Exp. Physiol. 87, 747–756 (2002).

    Article  Google Scholar 

  37. 37.

    Pallas-Bazarra, N. et al. Novel function of Tau in regulating the effects of external stimuli on adult hippocampal neurogenesis. EMBO J. 35, 1417–1436 (2016).

    CAS  Article  Google Scholar 

  38. 38.

    Martinez-Martin, P. & Avila, J. Alzheimer Center Reina Sofia Foundation: fighting the disease and providing overall solutions. J. Alzheimers Dis. 21, 337–348 (2016).

    Article  Google Scholar 

  39. 39.

    Mai, J., Majtanik, M. & Paxinos, G. Atlas of the Human Brain 4th edn (Academic Press, 2015).

Download references

Acknowledgements

The authors would like to thank the patients and families for generously donating brain samples. Moreover, they would like to thank Izaskun Rodal and Laura Saiz for help with human sample extraction and processing, and Esther García, Raquel Cuadros and the confocal microscopy facility of the CBMSO for technical assistance. The authors are grateful to Prof. Gleeson for providing an anti-doublecortin antibody. This study was supported by the following: the Spanish Ministry of Economy and Competitiveness (SAF-2017-82185-R and RYC-2015-171899 (M.L.-M.); SAF-2014-53040-P (J.A.)); The Alzheimer´s Association (2015-NIRG-340709 and AARG-17-528125 (M.L.-M.)); The Association for Frontotemporal Degeneration (2016 Basic Science Pilot Grant Award (M.L.-M.)); the Comunidad de Madrid (PEJD-2017-PRE/BMD-3439 (M.L.-M.)); and the Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED, Spain) (J.A.). Institutional grants from the Fundación Ramón Areces and Banco de Santander to CBMSO are also acknowledged. The salary of E.P.M.-J. was supported by a Comunidad de Madrid researcher contract (PEJD-2017-PRE/BMD-3439). The salary of J.T.-R. was supported by a Universidad Autónoma de Madrid Doctorate fellowship (FPI-UAM 2017 program). The salary of M.F.-G. was supported by a Formación de personal Investigador (FPI) contract, associated with the SAF-2017-82185-R grant (M.L.-M.), supported by the Spanish Ministry for Economy and Competitiveness (PRE2018-085233). The salary of E.P.M.-J. was supported by a Fundación Tatiana Pérez de Guzmán el Bueno Doctorate on Neuroscience Fellowship.

Author information

Affiliations

Authors

Contributions

M.F.-G., J.T.-R., E.P.M.-J. and M.L.-M. designed and conceived the study. A.R. provided materials and performed the autopsies. M.F.-G., J.T.-R., E.P.M.-J. and M.L.-M. performed experiments and analyzed the data. M.L.-M. wrote the manuscript. J.A. and M.L.-M. obtained funding. All authors critically discussed the data and revised the final version of the manuscript.

Corresponding author

Correspondence to María Llorens-Martín.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Josef Bischofberger and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related link

Key references using this protocol

Moreno-Jiménez, E.P. et al. Nat. Med. 25, 554–560 (2019): https://doi.org/10.1038/s41591-019-0375-9

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Flor-García, M., Terreros-Roncal, J., Moreno-Jiménez, E.P. et al. Unraveling human adult hippocampal neurogenesis. Nat Protoc 15, 668–693 (2020). https://doi.org/10.1038/s41596-019-0267-y

Download citation

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.