Abstract
Understanding chemical reactivity through the use of state-of-the-art computational techniques enables chemists to both predict reactivity and rationally design novel reactions. This protocol aims to provide chemists with the tools to implement a powerful and robust method for analyzing and understanding any chemical reaction using PyFrag 2019. The approach is based on the so-called activation strain model (ASM) of reactivity, which relates the relative energy of a molecular system to the sum of the energies required to distort the reactants into the geometries required to react plus the strength of their mutual interactions. Other available methods analyze only a stationary point on the potential energy surface, but our methodology analyzes the change in energy along a reaction coordinate. The use of this methodology has been proven to be critical to the understanding of reactions, spanning the realms of the inorganic and organic, as well as the supramolecular and biochemical, fields. This protocol provides step-by-step instructions—starting from the optimization of the stationary points and extending through calculation of the potential energy surface and analysis of the trend-decisive energy terms—that can serve as a guide for carrying out the analysis of any given reaction of interest within hours to days, depending on the size of the molecular system.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout





Data availability
The data that support this study are available from the corresponding author upon reasonable request.
Code availability
The open-source PyFrag 2019 code that was used to generate all the data shown in the protocol can be found at https://github.com/sunxb05/PyFrag.
References
Albright, T. A., Burdett, J. K. & Wangbo, W. H. Orbital Interactions in Chemistry 2nd edn (Wiley, New York, 2013).
Piela, L. Ideas of Quantum Chemistry 2nd edn (Elsevier, Amsterdam, 2013).
Becke, A. D. Perspective: fifty years of density-functional theory in chemical physics. J. Chem. Phys. 140, 18A301 (2014).
Goerigk, L. & Grimme, S. Efficient and accurate double-hybrid-meta-GGA density functionals—evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics, and noncovalent interactions. J. Chem. Theory Comput. 7, 291–309 (2011).
Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008).
Perdew, J. P. & Constantin, L. A. Laplacian-level density functionals for the kinetic energy density and exchange-correlation energy. Phys. Rev. B. 75, 155109 (2007).
Becke, A. D. Density functionals for static, dynamical, and strong correlation. J. Chem. Phys. 138, 074109 (2013).
Zhao, Y., Schultz, N. E. & Truhlar, D. G. Exchange-correlation functional with broad accuracy for metallic and nonmetallic compounds, kinetics, and noncovalent interactions. J. Chem. Phys. 123, 16110 (2005).
Zhao, Y. & Truhlar, D. G. Density functionals with broad applicability in chemistry. Acc. Chem. Res. 41, 157–167 (2008).
Hoffmann, R. Building bridges between inorganic and organic chemistry. Angew. Chem. Int. Ed. Engl. 21, 711–724 (1982). Angew. Chem. 94, 725–739 (1982)..
Fukui, K. The role of frontier molecular orbitals in chemical reactions. Angew. Chem. Int. Ed. Engl. 21, 801–809 (1982). Angew. Chem. 94, 852–861 (1982).
Marcus, R. A. On the theory of oxidation-reduction reactions involving electron transfer. I. J. Chem. Phys. 24, 966–978 (1956).
Marcus, R. A. Electrostatic free energy and other properties of states having nonequilibrium polarization. I. J. Chem. Phys. 24, 979–989 (1956).
Pross, A. & Shaik, S. S. A qualitative valence-bond approach to organic reactivity. Acc. Chem. Res. 16, 363–370 (1983).
Usharani, D., Janardanan, D., Li, C. & Shaik, S. A theory for bioinorganic chemical reactivity of oxometal complexes and analogous oxidants: the exchange and orbital-selection rules. Acc. Chem. Res. 46, 471–482 (2013).
Bickelhaupt, F. M. Understanding reactivity with Kohn-Sham molecular orbital theory: E2-SN2 mechanistic spectrum and other concepts. J. Comput. Chem. 20, 114–128 (1999).
Bickelhaupt, F. M. & Houk, K. N. Analyzing reaction rates with the distortion/interaction-activation strain model. Angew. Chem. Int. Ed. 56, 10070–10086 (2017). Angew. Chem. 129, 10204–10221 (2017).
Wolters, L. P. & Bickelhaupt, F. M. The activation strain model and molecular orbital theory. WIREs Comput. Mol. Sci. 5, 324–343 (2015).
Fernández, I. & Bickelhaupt, F. M. The activation strain model and molecular orbital theory: understanding and designing chemical reactions. Chem. Soc. Rev. 43, 4953–4967 (2014).
ADF, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com
te Velde, G. et al. Chemistry with ADF. J. Comput. Chem. 22, 931–967 (2001).
Bickelhaupt, F. M. & Baerends, E. J. Kohn-Sham density functional theory: predicting and understanding chemistry. In Reviews in Computational Chemistry, Vol. 15 (eds Lipkowitz, K. B. & Boyd, D. B) 1-86. (Wiley-Blackwell, Hoboken, NJ, 2000)
Sun, X., Soini, T. M., Poater, J., Hamlin, T. A. & Bickelhaupt, F. M. Pyfrag 2019–automating the exploration and analysis of reaction mechanisms. J. Comput. Chem. 40, 2227–2233 (2019).
Sun, X., Soini, T. M., Poater, J., Hamlin, T. A. & Bickelhaupt F. M. PyFrag 2019 [tutorial], (https://pyfragdocument.readthedocs.io/en/latest/includeme.html).
Fonseca Guerra, C., Handgraaf, J.-W., Baerends, E. J. & Bickelhaupt, F. M. Voronoi deformation density (VDD) charges. Assessment of the Mulliken, Bader, Hirshfeld, Weinhold and VDD methods for charge analysis. J. Comput. Chem. 25, 189–210 (2004).
Hirshfeld, F. L. Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acta 44, 129–138 (1977).
Swart, M., van Duijnen, P. Th & Snijders, J. G. A charge analysis derived from an atomic multipole expansion. J. Comput. Chem. 22, 79–88 (2001).
Cabrera-Trujillo, J. J. & Fernández, I. Influence of the Lewis acid/base pairs on the reactivity of geminal E-CH2–Eʹ frustrated Lewis pairs. Chem. Eur. J. 24, 17823–17831 (2018).
García-Rodeja, Y., Solà, M. & Fernández, I. Understanding the reactivity of planar polycyclic aromatic hydrocarbons: towards the graphene limit. Chem. Eur. J. 22, 10572–10580 (2016).
García-Rodeja, Y., Solà, M. & Fernández, I. Influence of the charge on the reactivity of azafullerenes. Phys. Chem. Chem. Phys. 20, 28011–28018 (2018).
García-Rodeja, Y. & Fernández, I. Factors controlling the reactivity of strained-alkyne embedded cycloparaphenylenes. J. Org. Chem. 84, 4330–4337 (2019).
Larrañaga, O. & de Cózar, A. Effect of an α-methyl substituent on the dienophile on Diels‐Alder endo:exo selectivity. ChemistryOpen 8, 49–57 (2019).
Jin, R., Liu, S. & Lan, Y. Distortion–interaction analysis along the reaction pathway to reveal the reactivity of the Alder-ene reaction of enes. RSC Adv. 5, 61426–61435 (2015).
Liu, S., Lei, Y., Qi, X. & Lan, Y. Reactivity for the Diels–Alder reaction of cumulenes: a distortion-interaction analysis along the reaction pathway. J. Phys. Chem. A 118, 2638–2645 (2014).
Galabov, B., Koleva, G., Schaefer, H. F. III & Allen, W. D. Nucleophilic influences and origin of the SN2 allylic effect. Chem. Eur. J. 24, 11637–11648 (2018).
Fell, J. S., Martin, B. N. & Houk, K. N. Origins of the unfavorable activation and reaction energies of 1-azadiene heterocycles compared to 2-azadiene heterocycles in Diels-Alder reactions. J. Org. Chem. 82, 1912–1919 (2017).
Champagne, P. A. & Houk, K. N. Influence of endo- and exocyclic heteroatoms on stabilities and 1,3-dipolar cycloaddition reactivities of mesoionic azomethine ylides and imines. J. Org. Chem. 82, 10980–10988 (2017).
Svatunek, D. & Houk, K. N. autoDIAS: a Python tool for an automated distortion/interaction activation strain analysis. J. Comput. Chem. 40, 2509–2515 (2019).
Laloo, J. Z. A., Savoo, N., Laloo, N., Rhyman, L. & Ramasami, P. ExcelAutomat 1.3: fragment analysis based on the distortion/interaction-activation strain model. J. Comput. Chem. 40, 619–624 (2019).
Liu, Y., Su, B., Dong, W., Li, Z. H. & Wang, H. Structural characterization of a boron (III) η2-σ-silane-complex. J. Am. Chem. Soc. 141, 8358–8363 (2019).
Sun, X., Rocha, M. V. J., Hamlin, T. A., Poater, J. & Bickelhaupt, F. M. Understanding the differences between iron and palladium in cross-coupling reactions. Phys. Chem. Chem. Phys. 21, 9651–9664 (2019).
Hong, X., Chan, K., Tsai, C. & Nørskov, J. K. How doped MoS2 breaks transition-metal scaling relations for CO2 electrochemical reduction. ACS Catal. 6, 4428–4437 (2016).
Vermeeren, P., Sun, X. & Bickelhaupt, F. M. Arylic C–X bond activation by palladium catalysts: activation-strain analyses of reactivity trends. Sci. Rep. 8, 10729 (2018).
Hamlin, T. A., Levandowski, B. J., Narsaria, A. K., Houk, K. N. & Bickelhaupt, F. M. Structural distortion of cycloalkynes influences cycloaddition rates both by strain and interaction energies. Chem. Eur. J. 25, 6342–6348 (2019).
Hamlin, T. A., Fernández, I. & Bickelhaupt, F. M. How dihalogens catalyze Michael addition reactions. Angew. Chem. Int. Ed. 58, 8922–8926 (2019). Angew. Chem. 131, 9015-9020 (2019).
van der Lubbe, S. C. C. & Fonseca Guerra, C. Hydrogen-bond strength of CC and GG pairs determined by steric repulsion: electrostatics and charge transfer overruled. Chem. Eur. J. 23, 10249–10253 (2017).
van der Lubbe, S. C. C., Zaccaria, F., Sun, X. & Fonseca Guerra, C. Secondary electrostatic interaction model revised: prediction comes mainly from measuring charge accumulation in hydrogen-bonded monomers. J. Am. Chem. Soc. 141, 4878–4885 (2019).
Hamlin, T. A., van Beek, B., Wolters, L. P. & Bickelhaupt, F. M. Nucleophilic substitution in solution: activation strain analysis of weak and strong solvent effects. Chem. Eur. J. 24, 5927–5938 (2018).
Laloo, J. Z. A., Rhyman, L., Ramasami, P., Bickelhaupt, F. M. & de Cózar, A. Ion-pair SN2 substitution: activation strain analyses of counter-ion and solvent effect. Chem. Eur. J. 22, 4431–4439 (2016).
Zaccaria, F., Paragi, G. & Fonseca Guerra, C. The role of alkali metal cations in the stabilization of guanine quadruplexes: why K+ is the best. Phys. Chem. Chem. Phys. 18, 20895–20904 (2016).
Zaccaria, F. & Fonseca Guerra, C. RNA versus DNA G-quadruplex: the origin of increased stability. Chem. Eur. J. 24, 16315–16322 (2018).
Pollice, R., Bot, M., Kobylianskii, I. J., Shenderovich, I. & Chen, P. Attenuation of London dispersion in dichloromethane solutions. J. Am. Chem. Soc. 139, 13126–13140 (2017).
Ess, D. H. & Houk, H. K. Distortion/interaction energy control of 1,3-dipolar cycloaddition reactivity. J. Am. Chem. Soc. 129, 10646–10647 (2007).
Ess, D. H. & Houk, H. K. Theory of 1,3-dipolar cycloadditions: distortion/interaction and frontier molecular orbital models. J. Am. Chem. Soc. 130, 10187–10198 (2008).
Hamlin, T. A. et al. Elucidating the trends in reactivity of aza-1,3-dipolar cycloadditions. Eur. J. Org. Chem. 2019, 378–386 (2019).
de Jong, G. Th, Solà, M., Visscher, L. & Bickelhaupt, F. M. Ab initio benchmark study for the oxidative addition of CH4 to Pd: importance of basis-set flexibility and polarization. J. Chem. Phys. 121, 9982–9992 (2004).
de Jong, G. Th, Geerke, D. P., Diefenbach, A. & Bickelhaupt, F. M. DFT benchmark study for the oxidative addition of CH4 to Pd. Performance of various density functionals. Chem. Phys. 313, 261–270 (2005).
de Jong, G. Th, Geerke, D. P., Diefenbach, A., Solà, M. & Bickelhaupt, F. M. Oxidative addition of the ethane C–C bond to Pd. An ab initio benchmark and DFT validation study. J. Comput. Chem. 26, 1006–1020 (2005).
de Jong, G. Th & Bickelhaupt, F. M. Oxidative addition of fluoromethane C–F bond to Pd. An ab initio benchmark and DFT validation study. J. Phys. Chem. A. 109, 9685–9699 (2005).
de Jong, G. Th & Bickelhaupt, F. M. Oxidative addition of the chloromethane C–Cl bond to Pd, an ab initio benchmark and DFT validation. J. Chem. Theory Comput. 2, 322–335 (2006).
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).
Johnson, E. R. & Becke, A. D. A post-Hartree-Fock model of intermolecular interactions. J. Chem. Phys. 123, 024101 (2005).
Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).
Bento, A. P., Solà, M. & Bickelhaupt, F. M. Ab initio and DFT benchmark study for nucleophilic substitution at carbon (SN2@C) and silicon (SN2@Si). J. Comput. Chem. 26, 1497–1504 (2005).
Bento, A. P., Solà, M. & Bickelhaupt, F. M. E2 and SN2 reactions of X– + CH3CH2X (X = F, Cl). An ab initio and DFT benchmark study. J. Chem. Theory Comput. 4, 929–940 (2008).
Pieniazek, S. N., Clemente, F. R. & Houk, K. N. Sources of error in DFT computations of C–C bond formation thermochemistries: π→σ transformations and error cancellation by DFT methods. Angew. Chem. Int. Ed. 47, 7746–7749 (2008). Angew. Chem. 120, 7860-7863 (2008).
Bannwarth, C., Ehlert, S. & Grimme, S. GFN2-xTB—an accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J. Chem. Theory Comput. 15, 1652–1671 (2019).
Acknowledgements
We thank the Netherlands Organization for Scientific Research (NWO) and the Dutch Astrochemistry Network (DAN) for financial support. Furthermore, we thank X. Sun for fruitful discussions and for testing of the complete protocol.
Author information
Authors and Affiliations
Contributions
P.V., S.C.C.v.d.L., and T.A.H. participated in the design of the protocol. P.V., S.C.C.v.d.L., C.F.G., F.M.B., and T.A.H. wrote the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Protocols thanks Xin Hong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
Key references using this protocol
Vermeeren, P., Sun, X. & Bickelhaupt, F. M. Sci. Rep. 8, 10729 (2018): https://doi.org/10.1038/s41598-018-28998-3
Sun, X., Soini, T. M., Poater, J., Hamlin, T. A. & Bickelhaupt, F. M. J. Comput. Chem. 40, 2227–2233 (2019): https://doi.org/10.1002/jcc.25871
Key data used in this protocol
Vermeeren, P., Sun, X. & Bickelhaupt, F. M. Sci. Rep. 8, 10729 (2018): https://doi.org/10.1038/s41598-018-28998-3
Hamlin, T. A., Levandowski, B. J., Narsaria, A. K., Houk, K. N. & F. Bickelhaupt, F. M. Chem. Eur. J. 25, 6342–6348 (2019): https://doi.org/10.1002/chem.201900295
Supplementary information
Supplementary Information
Supplementary Methods 1–17, Supplementary Data 1 and 2
Rights and permissions
About this article
Cite this article
Vermeeren, P., van der Lubbe, S.C.C., Fonseca Guerra, C. et al. Understanding chemical reactivity using the activation strain model. Nat Protoc 15, 649–667 (2020). https://doi.org/10.1038/s41596-019-0265-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41596-019-0265-0
This article is cited by
-
The energy components of the extended transition state energy decomposition analysis are path functions: the case of water tetramer
Theoretical Chemistry Accounts (2021)
-
What is the nature of bonding in [Fe(CO)3(NO)]− and [Fe(CO)4]2−?
Theoretical Chemistry Accounts (2020)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.