Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Quantum diamond spectrometer for nanoscale NMR and ESR spectroscopy

Abstract

Nitrogen-vacancy (NV) quantum defects in diamond are sensitive detectors of magnetic fields. Owing to their atomic size and optical readout capability, they have been used for magnetic resonance spectroscopy of nanoscale samples on diamond surfaces. Here, we present a protocol for fabricating NV diamond chips and for constructing and operating a simple, low-cost ‘quantum diamond spectrometer’ for performing NMR and electron spin resonance (ESR) spectroscopy in nanoscale volumes. The instrument is based on a commercially available diamond chip, into which an NV ensemble is ion-implanted at a depth of ~10 nm below the diamond surface. The spectrometer operates at low magnetic fields (~300 G) and requires standard optical and microwave (MW) components for NV spin preparation, manipulation, and readout. We demonstrate the utility of this device for nanoscale proton and fluorine NMR spectroscopy, as well as for the detection of transition metals via relaxometry. We estimate that the full protocol requires 2–3 months to implement, depending on the availability of equipment, diamond substrates, and user experience.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NV center overview.
Fig. 2: Nuclear and electronic spin-sensing schemes with NV centers.
Fig. 3: Overview of the procedure.
Fig. 4: Schematic of optical components.
Fig. 5: Schematic of electronic components.
Fig. 6: Overview of the described pulse sequences.
Fig. 7
Fig. 8
Fig. 9
Fig. 10: Magnet mount with x, z rotation for B0 field alignment.
Fig. 11: Avalanche photodiode (APD) holder.
Fig. 12: Photo of the quantum diamond spectrometer.
Fig. 13: Microwave delivery loop.
Fig. 14: Magnetic field alignment.
Fig. 15: Setting timing between the readout pulses.
Fig. 16: Rabi contrast.
Fig. 17: Detection of an external AC signal from an RF loop at 1.25 MHz with an XY8-12 dynamic decoupling sequence.
Fig. 18: Nuclear spin sensing with a dynamic decoupling sequence at 311 G.
Fig. 19: Correlation spectroscopy for NV-NMR sensing at 311 G.
Fig. 20: Electronic spin detection with NV-T1 relaxometry.
Fig. 21: Fourier transform of the NV-NMR correlation signal at 311 G.

Similar content being viewed by others

Data availability

The primary data of this study are available from the corresponding authors upon reasonable request.

Code availability

The qdSpectro package is available to download from https://gitlab.com/dplaudecraik/qdSpectro and is licensed under the MIT License. The most recent version at the time of writing is v.1.0.1, but the user is encouraged to download the latest version and refer to the readme file for any patches and updates. The package is registered at https://doi.org/10.5281/zenodo.1478113, which points to the latest version.

References

  1. Rule, G. S. and Hitchens, K. T. Fundamentals of Protein NMR Spectroscopy. (Springer, 2006).

  2. Schweiger, A. and Jeschke, G. Principles of Pulse Electron Paramagnetic Resonance. (Oxford University Press, 2001).

  3. Zalesskiy, S. S., Danieli, E., Blümich, B. & Ananikov, V. P. Miniaturization of NMR systems: desktop spectrometers, microcoil spectroscopy, and “NMR on a Chip” for chemistry, biochemistry, and industry. Chem. Rev. 114, 5641–5694 (2014).

    Article  CAS  Google Scholar 

  4. Fratila, R. M. & Velders, A. H. Small-volume nuclear magnetic resonance spectroscopy. Annu. Rev. Anal. Chem. 4, 227–249 (2011).

    Article  CAS  Google Scholar 

  5. Ardenkjaer-Larsen, J.-H. et al. Facing and overcoming sensitivity challenges in biomolecular NMR spectroscopy. Angew. Chem. Int. Ed. 54, 9162–9185 (2015).

    Article  CAS  Google Scholar 

  6. Staudacher, T. et al. Nuclear magnetic resonance spectroscopy on a (5-Nanometer)3 sample volume. Science 339, 561–563 (2013).

    Article  CAS  Google Scholar 

  7. Mamin, H. J. et al. Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor. Science 339, 557–560 (2013).

    Article  CAS  Google Scholar 

  8. Lovchinsky, I. et al. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic. Science 351, 836–841 (2016).

    Article  CAS  Google Scholar 

  9. Shi, F. et al. Single-protein spin resonance spectroscopy under ambient conditions. Science 347, 1135–1138 (2015).

    Article  CAS  Google Scholar 

  10. Sushkov, A. O. et al. Magnetic resonance detection of individual proton spins using quantum reporters. Phys. Rev. Lett. 113, 197601 (2014).

    Article  CAS  Google Scholar 

  11. Lovchinsky, I. et al. Magnetic resonance spectroscopy of an atomically thin material using a single-spin qubit. Science 355, 503–507 (2017).

    Article  CAS  Google Scholar 

  12. Aharonovich, I. et al. Diamond-based single-photon emitters. Rep. Prog. Phys. 74, 076501 (2011).

    Article  Google Scholar 

  13. Schirhagl, R., Chang, K., Loretz, M. & Degen, C. L. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu. Rev. Phys. Chem. 65, 83–105 (2014).

    Article  CAS  Google Scholar 

  14. Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).

    Article  CAS  Google Scholar 

  15. Rondin, L. et al. Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 77, 056503 (2014).

    Article  CAS  Google Scholar 

  16. Jelezko, F. & Wrachtrup, J. Single defect centres in diamond: a review. Phys. Status Solidi A 203, 3207–3225 (2006).

    Article  CAS  Google Scholar 

  17. Doherty, M. W. et al. Theory of the ground-state spin of the NV- center in diamond. Phys. Rev. B 85, 205203 (2012).

    Article  Google Scholar 

  18. Hincks, I., Granade, C. & Cory, D. G. Statistical inference with quantum measurements: methodologies for nitrogen vacancy centers in diamond. New J. Phys. 20, 013022 (2018).

    Article  Google Scholar 

  19. Meriles, C. A. et al. Imaging mesoscopic nuclear spin noise with a diamond magnetometer. J. Chem. Phys. 133, 124105 (2010).

    Article  Google Scholar 

  20. DeVience, S. J. et al. Nanoscale NMR spectroscopy and imaging of multiple nuclear species. Nat. Nanotechnol. 10, 129–134 (2015).

    Article  CAS  Google Scholar 

  21. Pham, L. M. et al. NMR technique for determining the depth of shallow nitrogen-vacancy centers in diamond. Phys. Rev. B 93, 045425 (2016).

    Article  Google Scholar 

  22. Herzog, B. E., Cadeddu, D., Xue, F., Peddibhotla, P. & Poggio, M. Boundary between the thermal and statistical polarization regimes in a nuclear spin ensemble. Appl. Phys. Lett. 105, 043112 (2014).

    Article  Google Scholar 

  23. Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).

    Article  Google Scholar 

  24. Abe, E. & Sasaki, K. Tutorial: magnetic resonance with nitrogen-vacancy centers in diamond—microwave engineering, materials science, and magnetometry. J. Appl. Phys. 123, 161101 (2018).

    Article  Google Scholar 

  25. Gullion, T., Baker, D. B. & Conradi, M. S. New, compensated Carr-Purcell sequences. J. Magn. Reson. 89, 479–484 (1990).

    CAS  Google Scholar 

  26. Ryan, C. A., Hodges, J. S. & Cory, D. G. Robust decoupling techniques to extend quantum coherence in diamond. Phys. Rev. Lett. 105, 200402 (2010).

    Article  CAS  Google Scholar 

  27. Loretz, M. et al. Spurious harmonic response of multipulse quantum sensing sequences. Phys. Rev. X 5, 021009 (2015).

    Google Scholar 

  28. Laraoui, A. et al. High-resolution correlation spectroscopy of 13C spins near a nitrogen-vacancy centre in diamond. Nat. Commun. 4, 1651 (2013).

    Article  Google Scholar 

  29. Kong, X., Stark, A., Du, J., McGuinness, L. P. & Jelezko, F. Towards chemical structure resolution with nanoscale nuclear magnetic resonance spectroscopy. Phys. Rev. Appl. 4, 024004 (2015).

    Article  Google Scholar 

  30. Staudacher, T. et al. Probing molecular dynamics at the nanoscale via an individual paramagnetic centre. Nat. Commun. 6, 8527 (2015).

    Article  CAS  Google Scholar 

  31. Kehayias, P. et al. Solution nuclear magnetic resonance spectroscopy on a nanostructured diamond chip. Nat. Commun. 8, 188 (2017).

    Article  CAS  Google Scholar 

  32. Aslam, N. et al. Nanoscale nuclear magnetic resonance with chemical resolution. Science 357, 67–71 (2017).

    Article  CAS  Google Scholar 

  33. Glenn, D. R. et al. High-resolution magnetic resonance spectroscopy using a solid-state spin sensor. Nature 555, 351–354 (2018).

    Article  CAS  Google Scholar 

  34. Bucher, D. B., Glenn, D. R., Park, H., Lukin, M. D. & Walsworth, R. L. Hyperpolarization-enhanced NMR spectroscopy with femtomole sensitivity using quantum defects in diamond. Preprint at https://arxiv.org/abs/1810.02408 (2018).

  35. Steinert, S. et al. Magnetic spin imaging under ambient conditions with sub-cellular resolution. Nat. Commun. 4, 1607 (2013).

    Article  CAS  Google Scholar 

  36. Sushkov, A. O. et al. All-optical sensing of a single-molecule electron spin. Nano Lett. 14, 6443–6448 (2014).

    Article  CAS  Google Scholar 

  37. Simpson, D. A. et al. Electron paramagnetic resonance microscopy using spins in diamond under ambient conditions. Nat. Commun. 8, 458 (2017).

    Article  Google Scholar 

  38. Ermakova, A. et al. Detection of a few metallo-protein molecules using color centers in nanodiamonds. Nano Lett. 13, 3305–3309 (2013).

    Article  CAS  Google Scholar 

  39. Schlipf, L. et al. A molecular quantum spin network controlled by a single qubit. Sci. Adv. 3, e1701116 (2017).

    Article  Google Scholar 

  40. Tetienne, J.-P. et al. Spin properties of dense near-surface ensembles of nitrogen-vacancy centers in diamond. Phys. Rev. B 97, 085402 (2018).

    Article  CAS  Google Scholar 

  41. Myers, B. A. et al. Probing surface noise with depth-calibrated spins in diamond. Phys. Rev. Lett. 113, 027602 (2014).

    Article  CAS  Google Scholar 

  42. Ofori-Okai, B. K. et al. Spin properties of very shallow nitrogen vacancy defects in diamond. Phys. Rev. B 86, 081406 (2012).

    Article  Google Scholar 

  43. Romach, Y. et al. Spectroscopy of surface-induced noise using shallow spins in diamond. Phys. Rev. Lett. 114, 017601 (2015).

    Article  CAS  Google Scholar 

  44. Ziegler, J. F., Ziegler, M. D. & Biersack, J. P. SRIM - the stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. B 268, 1818–1823 (2010).

    Article  CAS  Google Scholar 

  45. Lehtinen, O. et al. Molecular dynamics simulations of shallow nitrogen and silicon implantation into diamond. Phys. Rev. B 93, 035202 (2016).

    Article  Google Scholar 

  46. Yamamoto, T. et al. Extending spin coherence times of diamond qubits by high-temperature annealing. Phys. Rev. B 88, 075206 (2013).

    Article  Google Scholar 

  47. Haque, A. & Sumaiya, S. An overview on the formation and processing of nitrogen-vacancy photonic centers in diamond by ion implantation. J. Manuf. Mater. Process. 1, 6 (2017).

    Google Scholar 

  48. Pezzagna, S., Naydenov, B., Jelezko, F., Wrachtrup, J. & Meijer, J. Creation efficiency of nitrogen-vacancy centres in diamond. New J. Phys. 12, 065017 (2010).

    Article  Google Scholar 

  49. Kim, M. et al. Decoherence of near-surface nitrogen-vacancy centers due to electric field noise. Phys. Rev. Lett. 115, 087602 (2015).

    Article  CAS  Google Scholar 

  50. Fávaro de Oliveira, F. et al. Tailoring spin defects in diamond by lattice charging. Nat. Commun. 8, 15409 (2017).

    Article  Google Scholar 

  51. Rosskopf, T. et al. Investigation of surface magnetic noise by shallow spins in diamond. Phys. Rev. Lett. 112, 147602 (2014).

    Article  CAS  Google Scholar 

  52. Sangtawesin, S. et al. Origins of diamond surface noise probed by correlating single spin measurements with surface spectroscopy. Preprint at https://arxiv.org/abs/1811.00144 (2018).

  53. Atikian, H. A. et al. Superconducting nanowire single photon detector on diamond. Appl. Phys. Lett. 104, 122602 (2014).

    Article  Google Scholar 

  54. Tisler, J. et al. Fluorescence and spin properties of defects in single digit nanodiamonds. ACS Nano 3, 1959–1965 (2009).

    Article  CAS  Google Scholar 

  55. Pham, L. M. et al. Enhanced solid-state multispin metrology using dynamical decoupling. Phys. Rev. B 86, 045214 (2012).

    Article  Google Scholar 

  56. Aude Craik, D. P. L. qdSpectro. Zenodo. https://doi.org/10.5281/zenodo.1478113. (2019).

  57. Fischer, R., Jarmola, A., Kehayias, P. & Budker, D. Optical polarization of nuclear ensembles in diamond. Phys. Rev. B 87, 125207 (2013).

    Article  Google Scholar 

  58. Jacques, V. et al. Dynamic polarization of single nuclear spins by optical pumping of nitrogen-vacancy color centers in diamond at room temperature. Phys. Rev. Lett. 102, 057403 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This article is based on work supported by, or supported in part by, the US Army Research Laboratory and the US Army Research Office under contract/grant no. W911NF1510548. D.B.B. was partially supported by the German Research Foundation (BU 3257/1-1). D.P.L.A.C. was partially supported by the NSF STC ‘Center for Integrated Quantum Materials’ under cooperative agreement no. DMR-1231319.

Author information

Authors and Affiliations

Authors

Contributions

D.B.B. led the development of the protocol, buildup of the quantum diamond spectrometer, and acquisition and analysis of data, informed by extensive past work in the Walsworth group and aided closely by D.P.L.A.C. and M.P.B. D.P.L.A.C. wrote the qdSpectro software package. M.J.T. prepared the NV-diamond chip and provided technical assistance in buildup of the quantum diamond spectrometer. O.B.D. performed a pilot run of the protocol and provided feedback to improve procedures. D.R.G. provided technical guidance to all aspects of the effort. R.L.W. supervised the project. All authors discussed the results and participated in writing the manuscript.

Corresponding authors

Correspondence to Dominik B. Bucher or Ronald L. Walsworth.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

DeVience, S. J. et al. Nat. Nanotechnol. 10, 129–134 (2015): https://www.nature.com/articles/nnano.2014.313

Kehayias, P. et al. Nat. Commun. 8, 188 (2017): https://www.nature.com/articles/s41467-017-00266-4

Steinert, S. et al. Nat. Commun. 4, 1607 (2013): https://www.nature.com/articles/ncomms2588

Staudacher, T. et al. Science 339, 561–563 (2013): https://science.sciencemag.org/content/339/6119/561

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bucher, D.B., Aude Craik, D.P.L., Backlund, M.P. et al. Quantum diamond spectrometer for nanoscale NMR and ESR spectroscopy. Nat Protoc 14, 2707–2747 (2019). https://doi.org/10.1038/s41596-019-0201-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-019-0201-3

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing