Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Microfabricated blood vessels for modeling the vascular transport barrier

Abstract

The vascular endothelium forms the inner lining of blood vessels and actively regulates vascular permeability in response to chemical and physical stimuli. Understanding the molecular pathways and mechanisms that regulate the permeability of blood vessels is of critical importance for developing therapies for cardiovascular dysfunction and disease. Recently, we developed a novel microfluidic human engineered microvessel (hEMV) platform to enable controlled blood flow through a human endothelial lumen within a physiologic 3D extracellular matrix (ECM) into which pericytes and other stromal cells can be introduced to recapitulate tissue-specific microvascular physiology. This protocol describes how to design and fabricate the silicon hEMV device master molds (takes ~1 week) and elastomeric substrates (takes 3 d); how to seed, culture, and apply calibrated fluid shear stress to hEMVs (takes 1–7 d); and how to assess vascular barrier function (takes 1 d) and perform immunofluorescence imaging (takes 3 d).

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Human engineered microvessel platform.
Fig. 2: Overview of the process for making the human engineered microvessel platform.
Fig. 3: End products of key steps for device fabrication.
Fig. 4: Device fabrication procedure.
Fig. 5: Overview of the geometry for photolithography.
Fig. 6: Seeding human umbilical vein endothelial cells into human engineered microvessels.
Fig. 7: Applying flow to human engineered microvessels.
Fig. 8: Process for quantifying diffusive permeability of vessels in the human engineered microvessel platform.
Fig. 9: Expected results for flow and permeability in human engineered microvessels.
Fig. 10: Images of human engineered microvessel platform cultured under flow.
Fig. 11: Applications of the human engineered microvessel platform.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Code availability

The custom code used for the current study is provided in the Supplementary Data.

References

  1. 1.

    Ayata, C. & Ropper, A. H. Ischaemic brain oedema. J. Clin. Neurosci. 9, 113–124 (2002).

    Article  Google Scholar 

  2. 2.

    Dongaonkar, R. M., Stewart, R. H., Geissler, H. J. & Laine, G. A. Myocardial microvascular permeability, interstitial oedema, and compromised cardiac function. Cardiovasc. Res. 87, 331–339 (2010).

    CAS  Article  Google Scholar 

  3. 3.

    Hahn, C. & Schwartz, Ma Mechanotransduction in vascular physiology and atherogenesis. Nat. Rev. Mol. Cell Biol. 10, 53–62 (2009).

    CAS  Article  Google Scholar 

  4. 4.

    Heron, M. Deaths: leading causes for 2013. Natl. Vital Stat. Rep. 65, 1–95 (2016).

    PubMed  Google Scholar 

  5. 5.

    Chauhan, V. P., Stylianopoulos, T., Boucher, Y. & Jain, R. K. Delivery of molecular and nanoscale medicine to tumors: transport barriers and strategies. Annu. Rev. Chem. Biomol. Eng. 2, 281–298 (2011).

    CAS  Article  Google Scholar 

  6. 6.

    Mehta, D. & Malik, A. B. Signaling mechanisms regulating endothelial permeability. Physiol. Rev. 86, 279–367 (2006).

  7. 7.

    Tarbell, J. M. Mass transport in arteries and the localization of atherosclerosis. Annu. Rev. Biomed. Eng. 5, 79–118 (2003).

    CAS  Article  Google Scholar 

  8. 8.

    DePaola, N. et al. Electrical impedance of cultured endothelium under fluid flow. Ann. Biomed. Eng. 29, 648–656 (2001).

    CAS  Article  Google Scholar 

  9. 9.

    Tarbell, J. M. Shear stress and the endothelial transport barrier. Cardiovasc. Res. 87, 320–330 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    Caplan, B. B. A., Gerrity, R. G. & Schwartz, C. C. J. EC morphology in focal areas of in vivo evans blue uptake in young pig aorta. Exp. Mol. Pathol. 21, 102–117 (1974).

    CAS  Article  Google Scholar 

  11. 11.

    Bergers, G. & Song, S. The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol. 7, 452–464 (2005).

    CAS  Article  Google Scholar 

  12. 12.

    Wong, K. H. K., Chan, J. M., Kamm, R. D. & Tien, J. Microfluidic models of vascular functions. Annu. Rev. Biomed. Eng. 14, 205–230 (2012).

    CAS  Article  Google Scholar 

  13. 13.

    Huber, D., Oskooei, A., Casadevall Solvas, X., Demello, A. & Kaigala, G. V. Hydrodynamics in cell studies. Chem. Rev. 118, 2042–2079 (2018).

    CAS  Article  Google Scholar 

  14. 14.

    Polacheck, W. J. et al. A non-canonical Notch complex regulates adherens junctions and vascular barrier function. Nature 552, 258–262 (2017).

    CAS  Article  Google Scholar 

  15. 15.

    Alimperti, S. et al. Three-dimensional biomimetic vascular model reveals a RhoA, Rac1, and N-cadherin balance in mural cell–endothelial cell-regulated barrier function. Proc. Natl Acad. Sci. USA 114, 8758–8763 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    Mccurley, A. et al. Inhibition of avb5 Integrin attenuates vascular permeability and protects against renal ischemia-reperfusion injury. J. Am. Soc. Nephrol. 28, 1741–1752 (2017).

    CAS  Article  Google Scholar 

  17. 17.

    Chang, B. Mouse models for studies of retinal degeneration and diseases. in Retinal Degeneration: Methods and Protocols (eds. Weber, B. H. F. & Langmann, T.) 27–39 (Humana Press, Totowa, NJ, 2012).

  18. 18.

    Meijer, E. F. J., Baish, J. W., Padera, T. P. & Fukumura, D. Measuring vascular permeability in vivo. Methods Mol. Biol. 1458, 71–85 (2016).

  19. 19.

    Gerlowski, L. E. & Jain, R. K. Microvascular permeability of normal and neoplastic tissues. Microvasc. Res. 31, 288–305 (1986).

    CAS  Article  Google Scholar 

  20. 20.

    Yuan, F., Leunig, M., Berk, D. A. & Jain, R. K. Microvascular permeability of albumin, vascular surface area, and vascular volume measured in human adenocarcinoma LS174T using dorsal chamber in SCID mice. Microvasc. Res. 45, 269–289 (1993).

    CAS  Article  Google Scholar 

  21. 21.

    Siflinger-Birnboim, A. et al. Molecular sieving characteristics of the cultured endothelial monolayer. J. Cell. Physiol. 132, 111–117 (1987).

    CAS  Article  Google Scholar 

  22. 22.

    Chien, S. Effects of disturbed flow on endothelial cells. Ann. Biomed. Eng. 36, 554–562 (2008).

    Article  Google Scholar 

  23. 23.

    Dewey, C. F., Bussolari, S. R., Gimbrone, M. A. & Davies, P. F. The dynamic response of vascular endothelial cells to fluid shear stress. J. Biomech. Eng. 103, 177–185 (1981).

    Article  Google Scholar 

  24. 24.

    Bischoff, I. et al. Pitfalls in assessing microvascular endothelial barrier function: Impedance-based devices versus the classic macromolecular tracer assay. Sci. Rep. 6, 1–11 (2016).

    Article  Google Scholar 

  25. 25.

    Crone, C. & Olesen, S. P. Electrical resistance of brain microvascular endothelium. Brain Res. 241, 49–55 (1982).

    CAS  Article  Google Scholar 

  26. 26.

    Tiruppathi, C., Malik, A. B., Del Vecchio, P. J., Keese, C. R. & Giaever, I. Electrical method for detection of endothelial cell shape change in real time: assessment of endothelial barrier function. Proc. Natl. Acad. Sci. USA 89, 7919–7923 (1992).

    CAS  Article  Google Scholar 

  27. 27.

    Srinivasan, B. et al. TEER measurement techniques for in vitro barrier model systems. J. Lab. Autom. 20, 107–126 (2015).

    CAS  Article  Google Scholar 

  28. 28.

    Griep, L. M. et al. BBB on CHIP: microfluidic platform to mechanically and biochemically modulate blood-brain barrier function. Biomed. Microdevices 15, 145–150 (2013).

    CAS  Article  Google Scholar 

  29. 29.

    Zheng, Y. et al. In vitro microvessels for the study of angiogenesis and thrombosis. Proc. Natl. Acad. Sci. USA 109, 9342–9347 (2012).

    CAS  Article  Google Scholar 

  30. 30.

    Zervantonakis, I. K. et al. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc. Natl. Acad. Sci. USA 109, 13515–13520 (2012).

  31. 31.

    Farahat, Wa et al. Ensemble analysis of angiogenic growth in three-dimensional microfluidic cell cultures. PLoS ONE 7, e37333 (2012).

    CAS  Article  Google Scholar 

  32. 32.

    Morgan, J. P. et al. Formation of microvascular networks in vitro. Nat. Protoc. 8, 1820–1836 (2013).

    Article  Google Scholar 

  33. 33.

    Sobrino, A. et al. 3D microtumors in vitro supported by perfused vascular networks. Sci. Rep. 6, 1–11 (2016).

    Article  Google Scholar 

  34. 34.

    Kim, S., Chung, M., Ahn, J., Lee, S. & Jeon, N. L. Interstitial flow regulates the angiogenic response and phenotype of endothelial cells in a 3D culture model. Lab Chip 16, 4189–4199 (2016).

    CAS  Article  Google Scholar 

  35. 35.

    Chen, M. B. et al. On-chip human microvasculature assay for visualization and quantification of tumor cell extravasation dynamics. Nat. Protoc. 12, 865–880 (2017).

    CAS  Article  Google Scholar 

  36. 36.

    Nguyen, D.-H. T. et al. Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro. Proc. Natl. Acad. Sci. USA 110, 6712–6717 (2013).

    CAS  Article  Google Scholar 

  37. 37.

    Linville, R. M., Boland, N. F., Covarrubias, G., Price, G. M. & Tien, J. Physical and chemical signals that promote vascularization of capillary-scale channels. Cell. Mol. Bioeng. 9, 73–84 (2016).

    CAS  Article  Google Scholar 

  38. 38.

    Geraldo, S. et al. Do cancer cells have distinct adhesions in 3D collagen matrices and in vivo? Eur. J. Cell Biol. 91, 930–937 (2012).

    CAS  Article  Google Scholar 

  39. 39.

    Galie, P.a et al. Fluid shear stress threshold regulates angiogenic sprouting. Proc. Natl. Acad. Sci. USA 111, 7968–7973 (2014).

    CAS  Article  Google Scholar 

  40. 40.

    Capes, D. F. et al. Fluctuations in syringe-pump infusions: association with blood pressure variations in infants. Am. J. Health Syst. Pharm. 52, 1646–1653 (1995).

    CAS  Article  Google Scholar 

  41. 41.

    Deen, W. M. Analysis of Transport Phenomena (Oxford University Press, New York, 1998).

  42. 42.

    Adamson, R. H., Lenz, J. F. & Curry, F. E. Quantitative laser scanning confocal microscopy on single capillaries: permeability measurement. Microcirculation 1, 251–265 (1994).

    CAS  Article  Google Scholar 

  43. 43.

    Dejana, E., Orsenigo, F. & Lampugnani, M. G. The role of adherens junctions and VE-cadherin in the control of vascular permeability. J. Cell Sci. 121, 2115–2122 (2008).

    CAS  Article  Google Scholar 

  44. 44.

    Sung, K. E. et al. Control of 3-dimensional collagen matrix polymerization for reproducible human mammary fibroblast cell culture in microfluidic devices. Biomaterials 30, 4833–4841 (2009).

    CAS  Article  Google Scholar 

  45. 45.

    Cines, D. B. et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 91, 3527–3561 (1998).

    CAS  PubMed  Google Scholar 

  46. 46.

    Song, J. W. & Munn, L. L. Fluid forces control endothelial sprouting. Proc. Natl. Acad. Sci. USA 108, 15342–15347 (2011).

    CAS  Article  Google Scholar 

  47. 47.

    Polacheck, W. J., German, A. E., Mammoto, A., Ingber, D. E. & Kamm, R. D. Mechanotransduction of fluid stress guides 3D cell migration. Proc. Natl. Acad. Sci. USA 111, 2447–2452 (2014).

    CAS  Article  Google Scholar 

  48. 48.

    Trappmann, B. et al. Matrix degradability controls multicellularity of 3D cell migration. Nat. Commun. 8, 1–8 (2017).

    CAS  Article  Google Scholar 

  49. 49.

    Funamoto, K. et al. A novel microfluidic platform for high-resolution imaging of a three-dimensional cell culture under a controlled hypoxic environment. Lab Chip 12, 4855–4863 (2012).

  50. 50.

    Armulik, A. et al. Pericytes regulate the blood–brain barrier. Nature 468, 557–561 (2010).

    CAS  Article  Google Scholar 

  51. 51.

    Daneman, R., Zhou, L., Kebede, A. A. & Barres, B. A. Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature 468, 562–566 (2010).

    CAS  Article  Google Scholar 

  52. 52.

    Bautch, V. L. Stem cells and the vasculature. Nat. Med. 17, 1437–1443 (2011).

    CAS  Article  Google Scholar 

  53. 53.

    Au, P., Tam, J., Fukumura, D. & Jain, R. K. Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood 111, 4551–4558 (2008).

Download references

Acknowledgements

This work was supported in part by grants from the National Institutes of Health (EB00262, EB08396, UH3EB017103, and HL115553) and the National Science Foundation Center for Engineering MechanoBiology (CMMI15-48571). W.J.P. acknowledges support from a Ruth L. Kirchstein National Research Service Award (F32 HL129733) and from the NIH through the Organ Design and Engineering Training program (T32 EB16652); M.L.K. acknowledges support from the Hartwell Foundation and from the National Institutes of Health (K99-CA226366-01A1); and J.B.T. acknowledges support from the NIH through the Translational Research in Biomaterials Training Program (T32 EB006359).

Author information

Affiliations

Authors

Contributions

W.J.P. and C.S.C. conceived of the platform. W.J.P. designed and fabricated the device masters, optimized endothelial cell culture and flow protocols, and developed the permeability assay. W.J.P. and M.L.K. developed the staining and imaging protocols, and M.L.K. and J.B.T. developed the protocols for using hydrogels other than collagen I. J.B.T. optimized the use of pericytes. W.J.P., M.L.K., and J.B.T. performed the experiments and analyzed the data. W.J.P., M.L.K., J.B.T., and C.S.C. wrote the manuscript.

Corresponding author

Correspondence to Christopher S. Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Polacheck, W. J. et al. Nature 552, 258–262 (2017): https://doi.org/10.1038/nature24998

Alimperti, S. et al. Proc. Natl. Acad. Sci. USA 114, 8758–8763 (2017): https://doi.org/10.1073/pnas.1618333114

McCurley, A. et al. J. Am. Soc. Nephrol. 28, 1741–1752 (2017): https://doi.org/10.1681/ASN.2016020200

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Polacheck, W.J., Kutys, M.L., Tefft, J.B. et al. Microfabricated blood vessels for modeling the vascular transport barrier. Nat Protoc 14, 1425–1454 (2019). https://doi.org/10.1038/s41596-019-0144-8

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing