Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fabrication and practical applications of molybdenum disulfide nanopores

Abstract

Among the different developed solid-state nanopores, nanopores constructed in a monolayer of molybdenum disulfide (MoS2) stand out as powerful devices for single-molecule analysis or osmotic power generation. Because the ionic current through a nanopore is inversely proportional to the thickness of the pore, ultrathin membranes have the advantage of providing relatively high ionic currents at very small pore sizes. This increases the signal generated during translocation of biomolecules and improves the nanopores’ efficiency when used for desalination or reverse electrodialysis applications. The atomic thickness of MoS2 nanopores approaches the inter-base distance of DNA, creating a potential candidate for DNA sequencing. In terms of geometry, MoS2 nanopores have a well-defined vertical profile due to their atomic thickness, which eliminates any unwanted effects associated with uneven pore profiles observed in other materials. This protocol details all the necessary procedures for the fabrication of solid-state devices. We discuss different methods for transfer of monolayer MoS2, different approaches for the creation of nanopores, their applicability in detecting DNA translocations and the analysis of translocation data through open-source programming packages. We present anticipated results through the application of our nanopores in DNA translocations and osmotic power generation. The procedure comprises four parts: fabrication of devices (2–3 d), transfer of MoS2 and cleaning procedure (24 h), the creation of nanopores within MoS2 (30 min) and performing DNA translocations (2–3 h). We anticipate that our protocol will enable large-scale manufacturing of single-molecule-analysis devices as well as next-generation DNA sequencing.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Overview of the fabrication process.
Fig. 2: Nanopore-sensing principle.
Fig. 3: Osmotic power conversion.
Fig. 4: Power spectral density.
Fig. 5: Gold-plating the test chips.
Fig. 6: Leakage tests.
Fig. 7: Troubleshooting MoS2 transfer.
Fig. 8: Overview of PDMS-assisted selective transfer of MoS2.
Fig. 9: Beam damage.
Fig. 10: TEM characterization.
Fig. 11: Diameter and thickness of the aperture.
Fig. 12: Flow cell design.
Fig. 13: Overview of the substrate fabrication (Steps 1–30).
Fig. 14: Insufficient etching of the aperture (Step 19).
Fig. 15: Anticipated results: substrate fabrication.
Fig. 16: Anticipated results of the finished device when used for translocations.
Fig. 17: Anticipated results: osmotic power generation.

Code availability

All the code used to produce the figures, as well as the analysis of the raw data used in this protocol, is available publicly on Zenodo: https://doi.org/10.5281/zenodo.1463768.

Data availability

All the raw data used in this protocol are available publicly on Zenodo: https://doi.org/10.5281/zenodo.1463768.

References

  1. 1.

    Coulter, W. H. Means for counting particles suspended in a fluid. 1953. US patent 2,656,508 (1953).

  2. 2.

    Graham, M. D. The Coulter Principle: foundation of an industry. J. Assoc. Lab. Autom. 8, 72–81 (2003).

    Article  Google Scholar 

  3. 3.

    Kasianowicz, J. J., Brandin, E., Branton, D. & Deamer, D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. USA 93, 13770–13773 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Li, J. et al. Ion-beam sculpting at nanometre length scales. Nature 412, 166–169 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Laszlo, A. H. et al. Decoding long nanopore sequencing reads of natural DNA. Nat. Biotechnol. 32, 829–833 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Jain, M., Olsen, H. E., Paten, B. & Akeson, M. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 17, 239 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  7. 7.

    Yanagi, I., Ishida, T., Fujisaki, K. & Takeda, K. Fabrication of 3-nm-thick Si3N4 membranes for solid-state nanopores using the poly-Si sacrificial layer process. Sci. Rep. 5, 14656 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Kwok, H., Briggs, K. & Tabard Cossa, V. Nanopore fabrication by controlled dielectric breakdown. PLoS ONE 9, e92880 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  9. 9.

    van den Hout, M. et al. Controlling nanopore size, shape and stability. Nanotechnology 21, 115304 (2010).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  10. 10.

    Gilboa, T., Zrehen, A., Girsault, A. & Meller, A. Optically-monitored nanopore fabrication using a focused laser beam. Sci. Rep. 8, 9765 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  11. 11.

    Yuan, Y. et al. Sub-20 nm nanopores sculptured by a single nanosecond laser pulse. Preprint at http://arxiv.org/abs/1806.08172 (2018).

  12. 12.

    Skinner, G. M., van den Hout, M., Broekmans, O., Dekker, C. & Dekker, N. H. Distinguishing single- and double-stranded nucleic acid molecules using solid-state nanopores. Nano Lett. 9, 2953–2960 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Meller, A., Nivon, L., Brandin, E., Golovchenko, J. & Branton, D. Rapid nanopore discrimination between single polynucleotide molecules. Proc. Natl. Acad. Sci. USA 97, 1079–1084 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Storm, A. J., Chen, J. H., Zandbergen, H. W. & Dekker, C. Translocation of double-strand DNA through a silicon oxide nanopore. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71, 051903 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Plesa, C. et al. Direct observation of DNA knots using a solid-state nanopore. Nat. Nanotechnol. 11, 1093–1097 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Plesa, C. et al. Fast translocation of proteins through solid state nanopores. Nano Lett. 13, 658–663 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Talaga, D. S. & Li, J. Single-molecule protein unfolding in solid state nanopores. J. Am. Chem. Soc. 131, 9287–9297 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Li, J., Fologea, D., Rollings, R. & Ledden, B. Characterization of protein unfolding with solid-state nanopores. Protein. Pept. Lett. 21, 256–265 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Si, W. & Aksimentiev, A. Nanopore sensing of protein folding. ACS Nano 11, 7091–7100 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Yusko, E. C. et al. Real-time shape approximation and fingerprinting of single proteins using a nanopore. Nat. Nanotechnol. 12, 360–367 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Merchant, C. A. et al. DNA translocation through graphene nanopores. Nano Lett. 10, 2915–2921 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Garaj, S. et al. Graphene as a subnanometre trans-electrode membrane. Nature 467, 190–193 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Schneider, G. F. et al. DNA translocation through graphene nanopores. Nano Lett. 10, 3163–3167 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Hall, J. E. Access resistance of a small circular pore. J. Gen. Physiol. 66, 531–532 (1975).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Farimani, A. B., Min, K. & Aluru, N. R. DNA base detection using a single-layer MoS2. ACS Nano 8, 7914–7922 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Liu, K., Feng, J., Kis, A. & Radenovic, A. Atomically thin molybdenum disulfide nanopores with high sensitivity for dna translocation. ACS Nano 8, 2504–2511 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Feng, J. et al. Identification of single nucleotides in MoS 2 nanopores. Nat. Nanotechnol. 10, 1070–1076 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Heiranian, M., Farimani, A. B. & Aluru, N. R. Water desalination with a single-layer MoS2 nanopore. Nat. Commun. 6, 8616 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Feng, J. et al. Single-layer MoS2 nanopores as nanopower generators. Nature 536, 197–200 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Graf, M., Liu, K., Sarathy, A., Leburton, J.-P. & Radenovic, A. Transverse detection of DNA in a MoS2 nanopore. Biophys. J. 114, 180A (2018).

    Article  Google Scholar 

  32. 32.

    Feng, J. et al. Electrochemical reaction in single layer MoS2: nanopores opened atom by atom. Nano Lett. 15, 3431–3438 (2015).

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Danda, G. et al. Monolayer WS2 nanopores for DNA translocation with light-adjustable sizes. ACS Nano 11, 1937–1945 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Liu, K. et al. Geometrical effect in 2D nanopores. Nano Lett. 17, 4223–4230 (2017).

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Butler, S. Z. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013).

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Lin, Y.-C. et al. Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale 4, 6637 (2012).

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Lee, Y. H. et al. Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano Lett. 13, 1852–1857 (2013).

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Wang, X., Feng, H., Wu, Y. & Jiao, L. Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J. Am. Chem. Soc. 135, 5304–5307 (2013).

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Gurarslan, A. et al. Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates. ACS Nano 8, 11522–11528 (2014).

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Li, H. et al. A universal, rapid method for clean transfer of nanostructures onto various substrates. ACS Nano 8, 6563–6570 (2014).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  41. 41.

    Yu, H. et al. Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films. ACS Nano 11, 12001–12007 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Shinde, S. M. et al. Surface-functionalization-mediated direct transfer of molybdenum disulfide for large-area flexible devices. Adv. Funct. Mater. 28, 1–11 (2018).

    Article  CAS  Google Scholar 

  43. 43.

    Schneider, G. F., Calado, V. E., Zandbergen, H., Vandersypen, L. M. K. & Dekker, C. Wedging transfer of nanostructures. Nano Lett. 10, 1912–1916 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).

    Article  CAS  Google Scholar 

  45. 45.

    Zrehen, A., Gilboa, T. & Meller, A. Real-time visualization and sub-diffraction limit localization of nanometer-scale pore formation by dielectric breakdown. Nanoscale 9, 16437–16445 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Drndić, M. Sequencing with graphene pores. Nat. Nanotechnol. 9, 743–743 (2014).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  47. 47.

    Carson, S. & Wanunu, M. Challenges in DNA motion control and sequence readout using nanopore devices. Nanotechnology 26, 074004 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  48. 48.

    Branton, D. et al. The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26, 1146–1153 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Rosenstein, J. K., Wanunu, M., Merchant, C. A., Drndic, M. & Shepard, K. L. Integrated nanopore sensing platform with sub-microsecond temporal resolution. Nat. Methods 9, 487–492 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Wanunu, M. et al. Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nat. Nanotechnol. 5, 807–814 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Benameur, M. M. et al. Visibility of dichalcogenide nanolayers. Nanotechnology 22, 125706 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Tabard-Cossa, V., Trivedi, D., Wiggin, M., Jetha, N. N. & Marziali, A. Noise analysis and reduction in solid-state nanopores. Nanotechnology 18, 305505 (2007).

  53. 53.

    Wen, C. et al. Generalized noise study of solid-state nanopores at low frequencies. ACS Sens. 2, 300–307 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Smeets, R. M. M., Keyser, U. F., Dekker, N. H. & Dekker, C. Noise in solid-state nanopores. Proc. Natl. Acad. Sci. USA 105, 417–421 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Hoogerheide, D. P., Garaj, S. & Golovchenko, J. A. Probing surface charge fluctuations with solid-state nanopores. Phys. Rev. Lett. 102, 256804 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  56. 56.

    Smeets, R. M. M., Keyser, U. F., Wu, M. Y., Dekker, N. H. & Dekker, C. Nanobubbles in solid-state nanopores. Phys. Rev. Lett. 97, 088101 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    Garaj, S., Liu, S., Golovchenko, J. A. & Branton, D. Molecule-hugging graphene nanopores. Proc. Natl. Acad. Sci. USA 110, 12192–12196 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    Arjmandi-Tash, H., Belyaeva, L. A. & Schneider, G. F. Single molecule detection with graphene and other two-dimensional materials: nanopores and beyond. Chem. Soc. Rev. 45, 476–493 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Uram, J. D., Ke, K. & Mayer, M. L. Noise and bandwidth of current recordings from submicrometer pores and nanopores. ACS Nano 2, 857–872 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Balan, A. et al. Improving signal-to-noise performance for DNA translocation in solid-state nanopores at MHz bandwidths. Nano Lett. 14, 7215–7220 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Balan, A., Chien, C. C., Engelke, R. & Drndic, M. Suspended solid-state membranes on glass chips with sub 1-pF capacitance for biomolecule sensing applications. Sci. Rep. 5, 17775 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Waggoner, P. S., Kuan, A. T., Polonsky, S., Peng, H. & Rossnagel, S. M. Increasing the speed of solid-state nanopores. J. Vac. Sci. Technol. B 29, 032206 (2011).

    Article  CAS  Google Scholar 

  63. 63.

    Matsui, K. et al. Static charge outside chamber induces dielectric breakdown of solid-state nanopore membranes. Jpn. J. Appl. Phys. 57, 046702 (2018).

    Article  Google Scholar 

  64. 64.

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  65. 65.

    Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102, 10451–10453 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Dumcenco, D. et al. Large-area epitaxial monolayer MoS2. ACS Nano 9, 4611–4620 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Li, J. & Östling, M. Scalable fabrication of 2D semiconducting crystals for future electronics. Electronics 4, 1033–1061 (2015).

    CAS  Article  Google Scholar 

  68. 68.

    Kim, H., Ovchinnikov, D., Deiana, D., Unuchek, D. & Kis, A. Suppressing nucleation in metalorganic chemical vapor deposition of MoS2 monolayers by alkali metal halides. Nano Lett. 17, 5056–5063 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  69. 69.

    Waduge, P. et al. Direct and scalable deposition of atomically thin low-noise MoS2 membranes on apertures. ACS Nano 9, 7352–7359 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. 70.

    Ma, X. et al. Capillary-force-assisted clean-stamp transfer of two-dimensional materials. Nano Lett. 17, 6961–6967 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71.

    Garcia, A. et al. Analysis of electron beam damage of exfoliated MoS2 sheets and quantitative HAADF-STEM imaging. Ultramicroscopy 146, 33–38 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    Park, H. J., Ryu, G. H. & Lee, Z. Hole defects on two-dimensional materials formed by electron beam irradiation: toward nanopore devices. Appl. Microsc. 45, 107–114 (2015).

    Article  Google Scholar 

  73. 73.

    Hong, J. et al. Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 6, 1–8 (2015).

    Google Scholar 

  74. 74.

    Kuan, A. T., Lu, B., Xie, P., Szalay, T. & Golovchenko, J. A. Electrical pulse fabrication of graphene nanopores in electrolyte solution. Appl. Phys. Lett. 106, 203109 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  75. 75.

    Kowalczyk, S. W., Grosberg, A. Y., Rabin, Y. & Dekker, C. Modeling the conductance and DNA blockade of solid-state nanopores. Nanotechnology 22, 315101 (2011).

    PubMed  Article  CAS  Google Scholar 

  76. 76.

    Sahu, S. & Zwolak, M. Maxwell-Hall access resistance in graphene nanopores. Phys. Chem. Chem. Phys. 20, 4646–4651 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Carlsen, A. T., Zahid, O. K., Ruzicka, J., Taylor, E. W. & Hall, A. R. Interpreting the conductance blockades of DNA translocations through solid-state nanopores. ACS Nano 8, 4754–4760 (2014).

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Gadaleta, A. et al. Sub-additive ionic transport across arrays of solid-state nanopores. Phys. Fluids 26, 012005 (2014).

    Article  CAS  Google Scholar 

  79. 79.

    Moody, G. J., . & Oke, R. B. & Thomas, J. D. R. The influence of light on silver–silver chloride electrodes. Analyst 94, 803–804 (1969).

    CAS  Article  Google Scholar 

  80. 80.

    Raillon, C., Granjon, P., Graf, M., Steinbock, L. J. & Radenovic, A. Fast and automatic processing of multi-level events in nanopore translocation experiments. Nanoscale 4, 4916–4924 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. 81.

    Goyal, G., Lee, Y. B., Darvish, A., Ahn, C. W. & Kim, M. J. Hydrophilic and size-controlled graphene nanopores for protein detection. Nanotechnology 27, 1495301 (2016).

  82. 82.

    Wanunu, M., Morrison, W., Rabin, Y., Grosberg, A. Y. & Meller, A. Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nat. Nanotechnol. 5, 160–165 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. 83.

    York, D., Evensen, N. M., Martı́nez, M. L. & De Basabe Delgado, J. Unified equations for the slope, intercept, and standard errors of the best straight line. Am. J. Phys. 72, 367–375 (2004).

    Article  Google Scholar 

  84. 84.

    Forstater, J. H. et al. MOSAIC: a modular single-molecule analysis interface for decoding multistate nanopore data. Anal. Chem. 88, 11900–11907 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Plesa, C. & Dekker, C. Data analysis methods for solid-state nanopores. Nanotechnology 26, 084003 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  86. 86.

    Gu, Z., Ying, Y.-L., Cao, C., He, P. & Long, Y.-T. Accurate data process for nanopore analysis. Anal. Chem. 87, 907–913 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by a Swiss National Science Foundation (SNSF) Consolidator grant (BIONIC BSCGI0_157802), by a CCMX project (‘Large Area Growth of 2D Materials for device integration’) and also by a sponsored research agreement from Hoffmann-LaRoche. We thank M. Macha (EPFL), D. Dumcenco (EPFL), H. Cun (EPFL), Y. Zhao (EPFL) and M. Fadlelmula (EPFL) for providing MoS2 material. We thank A. Kis (EPFL) for discussions on improving transfer methods. Device fabrication was partially carried out at the Center for Micro/Nanotechnology (CMi) at EPFL and at the National Institute of Standards and Technology (NIST) Center of Nanoscale Science and Technology (CNST). We thank the Centre Interdisciplinaire de Microscopie Electronique (CIME) at EPFL for access to electron microscopes. V.G. acknowledges support under the Cooperative Research Agreement between the University of Maryland and the National Institute of Standards and Technology Center for Nanoscale Science and Technology, award 70NANB14H209, through the University of Maryland. This article identifies certain commercial equipment, instruments and materials to specify the experimental procedure. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the equipment, instruments and materials identified are necessarily the best available for the purpose. The authors thank J. Gundlach (University of Washington) for constructive comments on the manuscript.

Author information

Affiliations

Authors

Contributions

K.L. and J.F. performed the initial work on device fabrication, MoS2 transfer and pore characterization. M.G., J.T., V.G. and B.R.I. developed the substrate fabrication process; V.G. fabricated the substrates. Y.A. supervised the substrate fabrication process. J.F., K.L. and A.R. developed the electrochemical reaction pore-drilling method; M.G. built the transfer microscope setup; M.G. and M.L. developed the PMMA transfer method and optimized the MoS2 cleaning procedure; M.T. developed the PDMS transfer method; M.L. and M.G. performed TEM characterization; M.L. and K.L. optimized the TEM pore-drilling method; and M.G. developed the translocation data acquisition and analysis software. M.G., M.L. and M.T. fabricated the devices and performed the experiments. M.G., M.L., M.T., J.T. and A.R. wrote the manuscript. All authors provided constructive comments on the manuscript. The work was performed under the supervision of A.R.

Corresponding author

Correspondence to Aleksandra Radenovic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Liu, K., Feng, J., Kis, A. & Radenovic, A. ACS Nano 8, 2504–2511 (2014): https://doi.org/10.1021/nn406102h

Feng, J. et al. Nano Lett. 15, 3431–3438 (2015): https://doi.org/10.1021/acs.nanolett.5b00768

Feng, J. et al. Nat. Nanotechnol. 10, 1070–1076 (2015): https://doi.org/10.1038/nnano.2015.219

Feng, J. et al. Nature 536, 197–200 (2016): https://doi.org/10.1038/nature18593

Supplementary information

Reporting Summary

Supplementary Video 1

PMMA-assisted selective transfer of MoS2 to a SiNx membrane.

Supplementary Video 2

PDMS-assisted selective transfer of MoS2 to a SiNx membrane.

Supplementary Video 3

Preparation of an elastomer mix and precision painting of a SiNx membrane.

Supplementary Video 4

Procedure for chip mounting, and wetting and handling of the flow cell.

Supplementary Data 1

3D file for TEM holder.

Supplementary Data 2

3D file for flow cell.

Supplementary Data 3

CAD file for photolithography and e-beam lithography.

Supplementary Data 4

3D file for chip holder.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Graf, M., Lihter, M., Thakur, M. et al. Fabrication and practical applications of molybdenum disulfide nanopores. Nat Protoc 14, 1130–1168 (2019). https://doi.org/10.1038/s41596-019-0131-0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links