Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Measuring nanoscale diffusion dynamics in cellular membranes with super-resolution STED–FCS

Abstract

Super-resolution microscopy techniques enable optical imaging in live cells with unprecedented spatial resolution. They unfortunately lack the temporal resolution required to directly investigate cellular dynamics at scales sufficient to measure molecular diffusion. These fast time scales are, on the other hand, routinely accessible by spectroscopic techniques such as fluorescence correlation spectroscopy (FCS). To enable the direct investigation of fast dynamics at the relevant spatial scales, FCS has been combined with super-resolution stimulated emission depletion (STED) microscopy. STED–FCS has been applied in point or scanning mode to reveal nanoscale diffusion behavior of molecules in live cells. In this protocol, we describe the technical details of performing point STED–FCS (pSTED–FCS) and scanning STED–FCS (sSTED–FCS) measurements, from calibration and sample preparation to data acquisition and analysis. We give particular emphasis to 2D diffusion dynamics in cellular membranes, using molecules tagged with organic fluorophores. These measurements can be accomplished within 4–6 h by those proficient in fluorescence imaging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principles of STED–FCS.
Fig. 2: Schematic overview of the protocol.
Fig. 3: Alignment and calibration of the system.
Fig. 4: Artifacts in STED–FCS due to temporal misalignment of the excitation and STED laser (Time sync) and defocusing (Focus shift).
Fig. 5: Representative pSTED–FCS data for fluorescent phospholipids, sphingolipids and GPI-APs.
Fig. 6: Representative sSTED–FCS data for fluorescent phospholipids, sphingolipids and GPI-APs.
Fig. 7: Impact of photobleaching on sSTED–FCS and troubleshooting.
Fig. 8: Impact of bright signal bursts on sFCS and troubleshooting.

Similar content being viewed by others

Data availability

The STED–FCS data are available upon request. The software used for data analysis is freely available (‘Equipment’).

References

  1. Stefan, W. H. et al. The 2015 super-resolution microscopy roadmap. J. Phys. D 48, 443001 (2015).

    Article  CAS  Google Scholar 

  2. Sahl, S. J., Hell, S. W. & Jakobs, S. Fluorescence nanoscopy in cell biology. Nat. Rev. Mol. Cell Biol. 18, 685–701 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Elson, E. L. Fluorescence correlation spectroscopy: past, present, future. Biophys. J. 101, 2855–2870 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sezgin, E. Super-resolution optical microscopy for studying membrane structure and dynamics. J. Phys. Condens. Matter 29, 273001 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Klar, T. A. & Hell, S. W. Subdiffraction resolution in far-field fluorescence microscopy. Opt. Lett. 24, 954–956 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Klar, T. A., Jakobs, S., Dyba, M., Egner, A. & Hell, S. W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Magde, D., Elson, E. L. & Webb, W. W. Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13, 29–61 (1974).

    Article  CAS  PubMed  Google Scholar 

  9. Kim, S. A., Heinze, K. G. & Schwille, P. Fluorescence correlation spectroscopy in living cells. Nat. Methods 4, 963–973 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Wawrezinieck, L., Rigneault, H., Marguet, D. & Lenne, P. F. Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. Biophys. J. 89, 4029–4042 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lenne, P. F. et al. Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork. EMBO J. 25, 3245–3256 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mueller, V. et al. STED nanoscopy reveals molecular details of cholesterol- and cytoskeleton-modulated lipid interactions in living cells. Biophys. J. 101, 1651–1660 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schneider, F. et al. Diffusion of lipids and GPI-anchored proteins in actin-free plasma membrane vesicles measured by STED-FCS. Mol. Biol. Cell 28, 1507–1518 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fujiwara, T. K. et al. Confined diffusion of transmembrane proteins and lipids induced by the same actin meshwork lining the plasma membrane. Mol. Biol. Cell 27, 1101–1119 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kusumi, A., Ike, H., Nakada, C., Murase, K. & Fujiwara, T. Single-molecule tracking of membrane molecules: plasma membrane compartmentalization and dynamic assembly of raft-philic signaling molecules. Semin. Immunol. 17, 3–21 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Kusumi, A. & Suzuki, K. Toward understanding the dynamics of membrane-raft-based molecular interactions. Biochim. Biophys. Acta 1746, 234–251 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Andrade, D. M. et al. Cortical actin networks induce spatio-temporal confinement of phospholipids in the plasma membrane—a minimally invasive investigation by STED-FCS. Sci. Rep. 5, 11454 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kastrup, L., Blom, H., Eggeling, C. & Hell, S. W. Fluorescence fluctuation spectroscopy in subdiffraction focal volumes. Phys. Rev. Lett. 94, 178104 (2005).

    Article  PubMed  CAS  Google Scholar 

  19. Eggeling, C. et al. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457, 1159–1162 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Clausen, M. P. et al. A straightforward approach for gated STED-FCS to investigate lipid membrane dynamics. Methods 88, 67–75 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Waithe, D. et al. Optimized processing and analysis of conventional confocal microscopy generated scanning FCS data. Methods 140-141, 62–73 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schneider, F. et al. Nanoscale spatiotemporal diffusion modes measured by simultaneous confocal and stimulated emission depletion nanoscopy imaging. Nano Lett. 18, 4233–4240 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vicidomini, G. et al. STED-FLCS: an advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics. Nano Lett. 15, 5912–5918 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Honigmann, A. et al. Scanning STED-FCS reveals spatiotemporal heterogeneity of lipid interaction in the plasma membrane of living cells. Nat. Commun. 5, 5412–5412 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Benda, A., Ma, Y. & Gaus, K. Self-calibrated line-scan STED-FCS to quantify lipid dynamics in model and cell membranes. Biophys. J. 108, 596–609 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, R. et al. A straightforward STED-background corrected fitting model for unbiased STED-FCS analyses. Methods 140-141, 212–222 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Lanzano, L. et al. Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS. Nat. Commun. 8, 65 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Koenig, M. et al. ns-time resolution for multispecies STED-FLIM and artifact free STED-FCS. in Proceedings of SPIE 9712, Multiphoton Microscopy in the Biomedical Sciences XVI (Eds. Periasamy, A., So, P.T.C. & König, K.), 97120T (2016).

  29. Sezgin, E., Levental, I., Mayor, S. & Eggeling, C. The mystery of membrane organization: composition, regulation and physiological relevance of lipid rafts. Nat. Rev. Mol. Cell Biol. 18, 361–374 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bianchini, P., Cardarelli, F., Di Luca, M., Diaspro, A. & Bizzarri, R. Nanoscale protein diffusion by STED-based pair correlation analysis. PLoS ONE 9, e99619 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Hedde, P. N. et al. Stimulated emission depletion-based raster image correlation spectroscopy reveals biomolecular dynamics in live cells. Nat. Commun. 4, 2093 (2013).

    Article  PubMed  CAS  Google Scholar 

  32. Ringemann, C. et al. Exploring single-molecule dynamics with fluorescence nanoscopy. New J. Phys. 11, 103054 (2009).

    Article  CAS  Google Scholar 

  33. Sozanski, K., Sisamakis, E., Zhang, X. & Holyst, R. Quantitative fluorescence correlation spectroscopy in three-dimensional systems under stimulated emission depletion conditions. Optica 4, 982–988 (2017).

    Article  CAS  Google Scholar 

  34. Gao, P. & Nienhaus, G. U. Precise background subtraction in stimulated emission double depletion nanoscopy. Opt. Lett. 42, 831–834 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Chojnacki, J. et al. Envelope glycoprotein mobility on HIV-1 particles depends on the virus maturation state. Nat. Commun. 8, 545 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Urbancic, I. et al. Lipid composition but not curvature is the determinant factor for the low molecular mobility observed on the membrane of virus-like vesicles. Viruses 10, E415 (2018).

  37. Sezgin, E. et al. Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes. Biochim. Biophys. Acta 1818, 1777–1784 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Sarangi, N. K., Ayappa, K. G. & Basu, J. K. Complex dynamics at the nanoscale in simple biomembranes. Sci. Rep. 7, 11173 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Sarangi, N. K., Roobala, C. & Basu, J. K. Unraveling complex nanoscale lipid dynamics in simple model biomembranes: insights from fluorescence correlation spectroscopy in super-resolution stimulated emission depletion mode. Methods 140-141, 198–211 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Sarangi, N. K., P., I. I., Ayappa, K. G., Visweswariah, S. S. & Basu, J. K. Super-resolution stimulated emission depletion-fluorescence correlation spectroscopy reveals nanoscale membrane reorganization induced by pore-forming proteins. Langmuir 32, 9649–9657 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Honigmann, A., Mueller, V., Hell, S. W. & Eggeling, C. STED microscopy detects and quantifies liquid phase separation in lipid membranes using a new far-red emitting fluorescent phosphoglycerolipid analogue. Faraday Discuss. 161, 77–89 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Steshenko, O. et al. Reorganization of lipid diffusion by myelin basic protein as revealed by STED nanoscopy. Biophys. J. 110, 2441–2450 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Guzmán, C. et al. The efficacy of Raf kinase recruitment to the GTPase H-ras depends on H-ras membrane conformer-specific nanoclustering. J. Biol. Chem. 289, 9519–9533 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Chelladurai, R., Debnath, K., Jana, N. R. & Basu, J. K. nanoscale heterogeneities drive enhanced binding and anomalous diffusion of nanoparticles in model biomembranes. Langmuir 34, 1691–1699 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Jee, A. Y., Dutta, S., Cho, Y. K., Tlusty, T. & Granick, S. Enzyme leaps fuel antichemotaxis. Proc. Natl. Acad. Sci. USA 115, 14–18 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, X., Sisamakis, E., Sozanski, K. & Holyst, R. Nanoscopic approach to quantification of equilibrium and rate constants of complex formation at single-molecule level. J. Phys. Chem. Lett. 8, 5785–5791 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. King, J. T., Yu, C., Wilson, W. L. & Granick, S. Super-resolution study of polymer mobility fluctuations near c*. ACS Nano 8, 8802–8809 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Lagerholm, B. C., Andrade, D. M., Clausen, M. P. & Eggeling, C. Convergence of lateral dynamic measurements in the plasma membrane of live cells from single particle tracking and STED-FCS. J. Phys. D Appl. Phys. 50, 063001 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Kusumi, A., Shirai, Y. M., Koyama-Honda, I., Suzuki, K. G. N. & Fujiwara, T. K. Hierarchical organization of the plasma membrane: investigations by single-molecule tracking vs. fluorescence correlation spectroscopy. FEBS Lett. 584, 1814–1823 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Reina, F. et al. Complementary studies of lipid membrane dynamics using iSCAT and super-resolved fluorescence correlation spectroscopy. J. Phys. D Appl. Phys. 51, 235401 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Sezgin, E. et al. A comparative study on fluorescent cholesterol analogs as versatile cellular reporters. J. Lipid. Res. 57, 299–309 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Humpolickova, J. et al. Probing diffusion laws within cellular membranes by Z-scan fluorescence correlation spectroscopy. Biophys. J. 91, L23–L25 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Steinberger, T., Machan, R. & Hof, M. Z-scan fluorescence correlation spectroscopy as a tool for diffusion measurements in planar lipid membranes. Methods Mol. Biol. 1076, 617–634 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Veerapathiran, S. & Wohland, T. The imaging FCS diffusion law in the presence of multiple diffusive modes. Methods 140-141, 140–150 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Jin, W., Simsek, M. F. & Pralle, A. Quantifying spatial and temporal variations of the cell membrane ultra-structure by bimFCS. Methods 140-141, 151–160 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Krieger, J. W. et al. Imaging fluorescence (cross-) correlation spectroscopy in live cells and organisms. Nat. Protoc. 10, 1948–1974 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Di Rienzo, C., Gratton, E., Beltram, F. & Cardarelli, F. Fast spatiotemporal correlation spectroscopy to determine protein lateral diffusion laws in live cell membranes. Proc. Natl. Acad. Sci. USA 110, 12307–12312 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Di Rienzo, C., Gratton, E., Beltram, F. & Cardarelli, F. Spatiotemporal fluctuation analysis: a powerful tool for the future nanoscopy of molecular processes. Biophys. J. 111, 679–685 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Digman, M. A. & Gratton, E. Imaging barriers to diffusion by pair correlation functions. Biophys. J. 97, 665–673 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Moens, P. D., Digman, M. A. & Gratton, E. Modes of diffusion of cholera toxin bound to GM1 on live cell membrane by image mean square displacement analysis. Biophys. J. 108, 1448–1458 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Malacrida, L., Hedde, P. N., Ranjit, S., Cardarelli, F. & Gratton, E. Visualization of barriers and obstacles to molecular diffusion in live cells by spatial pair-cross-correlation in two dimensions. Biomed. Opt. Express 9, 303–321 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Wenger, J. et al. Diffusion analysis within single nanometric apertures reveals the ultrafine cell membrane organization. Biophys. J. 92, 913–919 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Leutenegger, M. et al. Confining the sampling volume for Fluorescence Correlation Spectroscopy using a sub-wavelength sized aperture. Opt. Express 14, 956–969 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Regmi, R. et al. Planar optical nanoantennas resolve cholesterol-dependent nanoscale heterogeneities in the plasma membrane of living cells. Nano Lett. 17, 6295–6302 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Clausen, M. P. et al. Pathways to optical STED microscopy. NanoBioImaging 1, 1–12 (2014).

    Article  Google Scholar 

  66. Hotta, J. et al. Spectroscopic rationale for efficient stimulated-emission depletion microscopy fluorophores. J. Am. Chem. Soc. 132, 5021–5023 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Rankin, B. R. et al. Nanoscopy in a living multicellular organism expressing GFP. Biophys. J. 100, L63–L65 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Butkevich, A. N. et al. Fluorescent rhodamines and fluorogenic carbopyronines for super-resolution STED microscopy in living cells. Angew. Chem. Int. Ed. Engl. 55, 3290–3294 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mobarak, E. et al. How to minimize dye-induced perturbations while studying biomembrane structure and dynamics: PEG linkers as a rational alternative. Biochim. Biophys. Acta 1860, 2436–2445 (2018).

    Article  CAS  Google Scholar 

  70. Hughes, L. D., Rawle, R. J. & Boxer, S. G. Choose your label wisely: water-soluble fluorophores often interact with lipid bilayers. PLoS ONE 9, e87649 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Moneron, G. et al. Fast STED microscopy with continuous wave fiber lasers. Opt. Express 18, 1302–1309 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Hense, A. et al. Monomeric Garnet, a far-red fluorescent protein for live-cell STED imaging. Sci. Rep. 5, 18006 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Strack, R. L. et al. A rapidly maturing far-red derivative of DsRed-Express2 for whole-cell labeling. Biochemistry 48, 8279–8281 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Morozova, K. S. et al. Far-red fluorescent protein excitable with red lasers for flow cytometry and superresolution STED nanoscopy. Biophys. J. 99, L13–L15 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Giepmans, B. N., Adams, S. R., Ellisman, M. H. & Tsien, R. Y. The fluorescent toolbox for assessing protein location and function. Science 312, 217–224 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Gendreizig, S., Kindermann, M. & Johnsson, K. Induced protein dimerization in vivo through covalent labeling. J. Am. Chem. Soc. 125, 14970–14971 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Stagge, F., Mitronova, G. Y., Belov, V. N., Wurm, C. A. & Jakobs, S. SNAP-, CLIP- and Halo-tag labelling of budding yeast cells. PLoS ONE 8, e78745 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Maraspini, R., Beutel, O. & Honigmann, A. Circle scanning STED fluorescence correlation spectroscopy to quantify membrane dynamics and compartmentalization. Methods 140-141, 188–197 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Waithe, D., Clausen, M. P., Sezgin, E. & Eggeling, C. FoCuS-point: software for STED fluorescence correlation and time-gated single photon counting. Bioinformatics 32, (958–960 (2015).

    Google Scholar 

  80. Muller, P., Schwille, P. & Weidemann, T. PyCorrFit-generic data evaluation for fluorescence correlation spectroscopy. Bioinformatics 30, 2532–2533 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Theer, P., Mongis, C. & Knop, M. PSFj: know your fluorescence microscope. Nat. Methods 11, 981–982 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Moffitt, J. R., Osseforth, C. & Michaelis, J. Time-gating improves the spatial resolution of STED microscopy. Opt. Express 19, 4242–4254 (2011).

    Article  PubMed  Google Scholar 

  83. Wahl, M., Gregor, I., Patting, M. & Enderlein, J. Fast calculation of fluorescence correlation data with asynchronous time-correlated single-photon counting. Opt. Express 11, 3583–3591 (2003).

    Article  PubMed  Google Scholar 

  84. Rossow, M. J., Sasaki, J. M., Digman, M. A. & Gratton, E. Raster image correlation spectroscopy in live cells. Nat. Protoc. 5, 1761–1774 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wachsmuth, M. et al. High-throughput fluorescence correlation spectroscopy enables analysis of proteome dynamics in living cells. Nat. Biotechnol. 33, 384–389 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Enderlein, J., Gregor, I., Patra, D. & Fitter, J. Art and artefacts of fluorescence correlation spectroscopy. Curr. Pharm. Biotechnol. 5, 155–161 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Bacia, K. & Schwille, P. Practical guidelines for dual-color fluorescence cross-correlation spectroscopy. Nat. Protoc. 2, 2842–2856 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Hiramoto-Yamaki, N. et al. Ultrafast diffusion of a fluorescent cholesterol analog in compartmentalized plasma membranes. Traffic 15, 583–612 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Galiani, S. et al. Strategies to maximize the performance of a STED microscope. Opt. Express 20, 7362–7374 (2012).

    Article  PubMed  Google Scholar 

  91. Keppler, A. et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 21, 86–89 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Gautier, A. et al. An engineered protein tag for multiprotein labeling in living cells. Chem. Biol. 15, 128–136 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Los, G. V. et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3, 373–382 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Wolfson Imaging Centre Oxford and the Micron Advanced Bioimaging Unit (Wellcome Trust Strategic Award 091911) for providing the microscope facility and financial support. We acknowledge funding by the Wolfson Foundation, the Medical Research Council (MRC, grant no. MC_UU_12010/unit programs G0902418 and MC_UU_12025), MRC/BBSRC/EPSRC (grant no. MR/K01577X/1), the Wellcome Trust (grant no. 104924/14/Z/14), the Deutsche Forschungsgemeinschaft (Research unit 1905 ‘Structure and function of the peroxisomal translocon’) and Oxford internal funds (John Fell Fund and EPA Cephalosporin Fund). E.S. is funded by a Newton-Katip Ҫelebi Institutional Links grant (352333122). I.U. is grateful for support from the European Commission through a Marie Skłodowska-Curie individual fellowship (707348). D.W. is funded by a URKI MRC grant (MR/S005382/1).

Author information

Authors and Affiliations

Authors

Contributions

E.S., F.S., S.G., I.U., D.W., B.C.L. and C.E. all took part in acquiring and analyzing the data and writing the manuscript.

Corresponding authors

Correspondence to Erdinc Sezgin or Christian Eggeling.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Protocols thanks Rudolf Rigler and the other (anonymous) reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Eggeling, C. et al. Nature 457, 1159–1162 (2009): https://www.nature.com/articles/nature07596

Honigmann, A. et al. Nat. Commun. 5, 5412 (2014): https://www.nature.com/articles/ncomms6412

Schneider, F. et al. Mol. Biol. Cell 28, 1507–1518 (2017): https://www.molbiolcell.org/doi/10.1091/mbc.e16-07-0536

Integrated supplementary information

Supplementary Figure 1

Loading the TCSPS data.

Supplementary Figure 2

Processing the TCSPS data.

Supplementary Figure 3

Fitting the correlated data.

Supplementary Figure 4

Navigating and saving the fit results.

Supplementary Figure 5

Loading the time mode data.

Supplementary Figure 6

Processing the sSTED–FCS data.

Supplementary Figure 7

Photobleaching correction for sSTED–FCS data.

Supplementary Figure 8

Spatial and temporal cropping of sSTED–FCS data.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sezgin, E., Schneider, F., Galiani, S. et al. Measuring nanoscale diffusion dynamics in cellular membranes with super-resolution STED–FCS. Nat Protoc 14, 1054–1083 (2019). https://doi.org/10.1038/s41596-019-0127-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-019-0127-9

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing