Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Holographic two-photon activation for synthetic optogenetics

Abstract

Optogenetic tools provide users the ability to photocontrol the activity of cells. Commonly, activation is achieved by expression of proteins from photosynthetic organisms, for example, microbial opsins (e.g., ChR2). Alternatively, a sister approach, synthetic optogenetics, enables photocontrol over proteins of mammalian origin by use of photoswitches, visible light (typically), and genetic modification. Thus, synthetic optogenetics facilitates interrogation of native neuronal signaling mechanisms. However, the poor tissue penetration of visible wavelengths impedes the use of the technique in tissue, as two-photon excitation (2PE) is typically required to access the near-infrared window. Here, we describe an alternative technique that uses 2PE-compatible photoswitches (section 1) for photoactivation of genetically modified glutamate receptors (section 2). Furthermore, for fast, multi-region photoactivation, we describe the use of 2P-digital holography (2P-DH) (section 3). We detail how to combine 2P-DH and synthetic optogenetics with electrophysiology, or with red fluorescence Ca2+ recordings, for all-optical neural interrogation. The time required to complete the methods, aside from obtaining the necessary reagents and illumination equipment, is ~3 weeks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Blueprint for applying synthetic optogenetics.
Fig. 2: Two-photon-compatible photoswitch.
Fig. 3: Rational design of LiGluR.
Fig. 4: Sequence homology.
Fig. 5: Ranking photocurrent.
Fig. 6: Two-photon digital holography setup.
Fig. 7: Reaction scheme describing the synthesis of 6 and l-MAG0460.
Fig. 8
Fig. 9: LiGluR photocurrents stimulated by 1P and 2P excitation of l-MAG0460 in cultured neurons.
Fig. 10: The 2P-DH photoswitching of l-MAG0460 is compatible with red Ca2+ imaging on a spinning-disk confocal microscope.

Similar content being viewed by others

Data availability

The authors declare that most data supporting the findings of this study are available within the paper; however, data are also available from the corresponding author upon request.

References

  1. Ji, N., Shroff, H., Zhong, H. & Betzig, E. Advances in the speed and resolution of light microscopy. Curr. Opin. Neurobiol. 18, 605–616 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Ramon, Y. C. S. Structure and connections of neurons. Bull. Los Angeles Neurol. Soc. 17, 5–46 (1952).

    Google Scholar 

  3. Rodriguez, E. A. et al. The growing and glowing toolbox of fluorescent and photoactive proteins. Trends Biochem. Sci. 42, 111–129 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Nagel, G. et al. Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296, 2395–2398 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Deisseroth, K. et al. Next-generation optical technologies for illuminating genetically targeted brain circuits. J. Neurosci. 26, 10380–10386 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kaufman, H., Vratsanos, S. M. & Erlanger, B. F. Photoregulation of an enzymic process by means of a light-sensitive ligand. Science 162, 1487–1489 (1968).

    Article  CAS  PubMed  Google Scholar 

  7. Szobota, S. & Isacoff, E. Y. Optical control of neuronal activity. Annu. Rev. Biophys. 39, 329–348 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kramer, R. H., Mourot, A. & Adesnik, H. Optogenetic pharmacology for control of native neuronal signaling proteins. Nat. Neurosci. 16, 816–823 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Reiner, A. & Isacoff, E. Y. Photoswitching of cell surface receptors using tethered ligands. Methods Mol. Biol. 1148, 45–68 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Kienzler, M. A. & Isacoff, E. Y. Precise modulation of neuronal activity with synthetic photoswitchable ligands. Curr. Opin. Neurobiol. 45, 202–209 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Berlin, S. & Isacoff, E. Y. Synapses in the spotlight with synthetic optogenetics. EMBO Rep. 18, 677–692 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Berlin, S. & Isacoff, E. Y. in Biochemical Approaches for Glutamatergic Neurotransmission (eds. Parrot, S. & Denoroy, L.) 293–325 (Springer, New York, 2018).

  13. Mourot, A., Herold, C., Kienzler, M. A. & Kramer, R. H. Understanding and improving photo-control of ion channels in nociceptors with azobenzene photo-switches. Br. J. Pharmacol. 175, 2296–2311 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Gorostiza, P. & Isacoff, E. Y. Optical switches for remote and noninvasive control of cell signaling. Science 322, 395–399 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Izquierdo-Serra, M. et al. Optical control of endogenous receptors and cellular excitability using targeted covalent photoswitches. Nat. Commun. 7, 12221 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mourot, A. et al. Rapid optical control of nociception with an ion-channel photoswitch. Nat. Methods 9, 396–402 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Carroll, E. C. et al. Two-photon brightness of azobenzene photoswitches designed for glutamate receptor optogenetics. Proc. Natl. Acad. Sci. USA 112, E776–E785 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kienzler, M. A. et al. A red-shifted, fast-relaxing azobenzene photoswitch for visible light control of an ionotropic glutamate receptor. J. Am. Chem. Soc. 135, 17683–17686 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Laprell, L. et al. Optical control of NMDA receptors with a diffusible photoswitch. Nat. Commun. 6, 8076 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Passlick, S., Richers, M. T. & Ellis-Davies, G. C. R. Thermodynamically stable, photoreversible pharmacology in neurons with one- and two-photon excitation. Angew. Chem. Int. Ed. Engl. 57, 12554–12557 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Konrad, D. B., Frank, J. A. & Trauner, D. Synthesis of redshifted azobenzene photoswitches by late-stage functionalization. Chemistry 22, 4364–4368 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Izquierdo-Serra, M. et al. Two-photon neuronal and astrocytic stimulation with azobenzene-based photoswitches. J. Am. Chem. Soc. 136, 8693–8701 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hull, K., Morstein, J. & Trauner, D. In vivo photopharmacology. Chem. Rev. 118, 10710–10747 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Dong, M., Babalhavaeji, A., Samanta, S., Beharry, A. A. & Woolley, G. A. Red-shifting azobenzene photoswitches for in vivo use. Acc. Chem. Res. 48, 2662–2670 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2, 932–940 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Bockmann, M., Doltsinis, N. L. & Marx, D. Nonadiabatic hybrid quantum and molecular mechanic simulations of azobenzene photoswitching in bulk liquid environment. J. Phys. Chem. A 114, 745–754 (2010).

    Article  PubMed  CAS  Google Scholar 

  28. Berlin, S. et al. A family of photoswitchable NMDA receptors. Elife 5, e12040 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Spicer, C. D. & Davis, B. G. Selective chemical protein modification. Nat. Commun. 5, 4740 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Leippe, P., Koehler Leman, J. & Trauner, D. Specificity and speed: tethered photopharmacology. Biochemistry 56, 5214–5220 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Durand-de Cuttoli, R. et al. Manipulating midbrain dopamine neurons and reward-related behaviors with light-controllable nicotinic acetylcholine receptors. Elife 7, e37487 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lin, W. C. et al. A comprehensive optogenetic pharmacology toolkit for in vivo control of GABA(A) receptors and synaptic inhibition. Neuron 88, 879–891 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Reiner, A. & Isacoff, E. Y. Tethered ligands reveal glutamate receptor desensitization depends on subunit occupancy. Nat. Chem. Biol. 10, 273–280 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fodje, M. N. & Al-Karadaghi, S. Occurrence, conformational features and amino acid propensities for the pi-helix. Protein Eng. 15, 353–358 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Wyart, C. et al. Optogenetic dissection of a behavioural module in the vertebrate spinal cord. Nature 461, 407–410 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Volgraf, M. et al. Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat. Chem. Biol. 2, 47–52 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Levitz, J. et al. Optical control of metabotropic glutamate receptors. Nat. Neurosci. 16, 507–516 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Numano, R. et al. Nanosculpting reversed wavelength sensitivity into a photoswitchable iGluR. Proc. Natl. Acad. Sci. USA 106, 6814–6819 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rullo, A. et al. Long wavelength optical control of glutamate receptor ion channels using a tetra-ortho-substituted azobenzene derivative. Chem. Commun. 50, 14613–14615 (2014).

    Article  CAS  Google Scholar 

  40. Burnashev, N., Zhou, Z., Neher, E. & Sakmann, B. Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes. J. Physiol. 485, 403–418 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schneggenburger, R., Zhou, Z., Konnerth, A. & Neher, E. Fractional contribution of calcium to the cation current through glutamate receptor channels. Neuron 11, 133–143 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. Zucker, R. S. Calcium- and activity-dependent synaptic plasticity. Curr. Opin. Neurobiol. 9, 305–313 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Li, D., Herault, K., Isacoff, E. Y., Oheim, M. & Ropert, N. Optogenetic activation of LiGluR-expressing astrocytes evokes anion channel-mediated glutamate release. J. Physiol. 590, 855–873 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Szobota, S. et al. Remote control of neuronal activity with a light-gated glutamate receptor. Neuron 54, 535–545 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Niswender, C. M. & Conn, P. J. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu. Rev. Pharmacol. Toxicol. 50, 295–322 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kunishima, N. et al. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 407, 971–977 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Oron, D., Papagiakoumou, E., Anselmi, F. & Emiliani, V. Two-photon optogenetics. Prog. Brain Res. 196, 119–143 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Chen, I. W., Papagiakoumou, E. & Emiliani, V. Towards circuit optogenetics. Curr. Opin. Neurobiol. 50, 179–189 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang, W. & Yuste, R. Holographic imaging and photostimulation of neural activity. Curr. Opin. Neurobiol. 50, 211–221 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Yang, W., Carrillo-Reid, L., Bando, Y., Peterka, D. S. & Yuste, R. Simultaneous two-photon imaging and two-photon optogenetics of cortical circuits in three dimensions. Elife 7, e32671 (2018).

  51. Dal Maschio, M. et al. Simultaneous two-photon imaging and photo-stimulation with structured light illumination. Opt. Express 18, 18720–18731 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Nikolenko, V. et al. SLM Microscopy: scanless two-photon imaging and photostimulation with spatial light modulators. Front. Neural Circuits 2, 5 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Goodman, J. W. Introduction to Fourier Optics (W. H. Freeman, New York, 2005).

  54. Curtis, J. E., Koss, B. A. & Grier, D. G. Dynamic holographic optical tweezers. Opt. Commun. 207, 169–175 (2002).

    Article  CAS  Google Scholar 

  55. Zhao, Y. et al. An expanded palette of genetically encoded Ca2+ indicators. Science 333, 1888–1891 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dana, H. et al. Sensitive red protein calcium indicators for imaging neural activity. Elife 5, e12727 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Berlin, S. et al. Photoactivatable genetically encoded calcium indicators for targeted neuronal imaging. Nat. Methods 12, 852–858 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tian, L. et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 6, 875–881 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Habermacher, C. et al. Photo-switchable tweezers illuminate pore-opening motions of an ATP-gated P2X ion channel. Elife 5, e11050 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lester, H. A. & Chang, H. W. Response of acetylcholine receptors to rapid photochemically produced increases in agonist concentration. Nature 266, 373–374 (1977).

    Article  CAS  PubMed  Google Scholar 

  62. Borowiak, M. et al. Photoswitchable inhibitors of microtubule dynamics optically control mitosis and cell death. Cell 162, 403–411 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Gaub, B. M. et al. Restoration of visual function by expression of a light-gated mammalian ion channel in retinal ganglion cells or ON-bipolar cells. Proc. Natl. Acad. Sci. USA 111, E5574–E5583 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tochitsky, I., Kienzler, M. A., Isacoff, E. & Kramer, R. H. Restoring vision to the blind with chemical photoswitches. Chem. Rev. 118, 10748–10773 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Baker, C. K. & Flannery, J. G. Innovative optogenetic strategies for vision restoration. Front. Cell. Neurosci. 12, 316 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Guenthner, C. J., Miyamichi, K., Yang, H. H., Heller, H. C. & Luo, L. Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations. Neuron 78, 773–784 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kawashima, T., Okuno, H. & Bito, H. A new era for functional labeling of neurons: activity-dependent promoters have come of age. Front. Neural Circuits 8, 37 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Ryan, T. J., Roy, D. S., Pignatelli, M., Arons, A. & Tonegawa, S. Memory. Engram cells retain memory under retrograde amnesia. Science 348, 1007–1013 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu, X. et al. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484, 381–385 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tonegawa, S., Liu, X., Ramirez, S. & Redondo, R. Memory engram cells have come of age. Neuron 87, 918–931 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Zhou, Q. & Sheng, M. NMDA receptors in nervous system diseases. Neuropharmacology 74, 69–75 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Milnerwood, A. J. et al. Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington’s disease mice. Neuron 65, 178–190 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Okamoto, S. et al. Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin. Nat. Med. 15, 1407–1413 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tischer, D. & Weiner, O. D. Illuminating cell signalling with optogenetic tools. Nat. Rev. Mol. Cell Biol. 15, 551–558 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Govorunova, E. G., Sineshchekov, O. A., Li, H. & Spudich, J. L. Microbial rhodopsins: diversity, mechanisms, and optogenetic applications. Annu. Rev. Biochem. 86, 845–872 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yawo, H., Asano, T., Sakai, S. & Ishizuka, T. Optogenetic manipulation of neural and non-neural functions. Dev. Growth Differ. 55, 474–490 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Wen, L. et al. Opto-current-clamp actuation of cortical neurons using a strategically designed channelrhodopsin. PLoS ONE 5, e12893 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Quejada, J. R. et al. Optimized light-inducible transcription in mammalian cells using Flavin Kelch-repeat F-box1/GIGANTEA and CRY2/CIB1. Nucleic Acids Res. 45, e172 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Broussard, G. J. et al. In vivo measurement of afferent activity with axon-specific calcium imaging. Nat. Neurosci. 21, 1272–1280 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gradinaru, V. et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141, 154–165 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mahn, M. et al. High-efficiency optogenetic silencing with soma-targeted anion-conducting channelrhodopsins. Nat. Commun. 9, 4125 (2018).

  82. Zhang, F. et al. The microbial opsin family of optogenetic tools. Cell 147, 1446–1457 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Thalhammer, G., Bowman, R. W., Love, G. D., Padgett, M. J. & Ritsch-Marte, M. Speeding up liquid crystal SLMs using overdrive with phase change reduction. Opt. Express 21, 1779–1797 (2013).

    Article  PubMed  Google Scholar 

  84. Vaziri, A. & Emiliani, V. Reshaping the optical dimension in optogenetics. Curr. Opin. Neurobiol. 22, 128–137 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Mathieson, T. et al. Systematic analysis of protein turnover in primary cells. Nat. Commun. 9, 689 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Cohen, L. D. et al. Metabolic turnover of synaptic proteins: kinetics, interdependencies and implications for synaptic maintenance. PLoS ONE 8, e63191 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Drobizhev, M., Makarov, N. S., Tillo, S. E., Hughes, T. E. & Rebane, A. Two-photon absorption properties of fluorescent proteins. Nat. Methods 8, 393–399 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Papagiakoumou, E. et al. Scanless two-photon excitation of channelrhodopsin-2. Nat. Methods 7, 848–854 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lutz, C. et al. Holographic photolysis of caged neurotransmitters. Nat. Methods 5, 821–827 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bègue, A. et al. Two-photon excitation in scattering media by spatiotemporally shaped beams and their application in optogenetic stimulation. Biomed. Opt. Express 4, 2869–2879 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Papagiakoumou, E., de Sars, V., Oron, D. & Emiliani, V. Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses. Opt. Express 16, 22039–22047 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Hernandez, O. et al. Three-dimensional spatiotemporal focusing of holographic patterns. Nat. Commun. 7, 11928 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pégard, N. C. et al. Three-dimensional scanless holographic optogenetics with temporal focusing (3D-SHOT). Nat. Commun. 8, 1228 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Mardinly, A. R. et al. Precise multimodal optical control of neural ensemble activity. Nat. Neurosci. 21, 881–893 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang, J. Z., Pegard, N., Zhong, J. S., Adesnik, H. & Waller, L. 3D computer-generated holography by non-convex optimization. Optica 4, 1306–1313 (2017).

    Article  Google Scholar 

  96. Di Leonardo, R., Ianni, F. & Ruocco, G. Computer generation of optimal holograms for optical trap arrays. Opt. Express 15, 1913–1922 (2007).

    Article  PubMed  Google Scholar 

  97. Pozzi, P. et al. Fast calculation of computer generated holograms for 3D photostimulation through compressive-sensing Gerchberg–Saxton algorithm. Methods Protoc. 2, 2 (2019).

  98. Carbone, A. L. & Plested, A. J. Coupled control of desensitization and gating by the ligand binding domain of glutamate receptors. Neuron 74, 845–857 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Weston, M. C., Gertler, C., Mayer, M. L. & Rosenmund, C. Interdomain interactions in AMPA and kainate receptors regulate affinity for glutamate. J. Neurosci. 26, 7650–7658 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Levitz, J., Popescu, A. T., Reiner, A. & Isacoff, E. Y. A toolkit for orthogonal and in vivo optical manipulation of ionotropic glutamate receptors. Front. Mol. Neurosci. 9, 2 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Mah, S. J., Cornell, E., Mitchell, N. A. & Fleck, M. W. Glutamate receptor trafficking: endoplasmic reticulum quality control involves ligand binding and receptor function. J. Neurosci. 25, 2215–2225 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Al-Ali, H., Blackmore, M., Bixby, J. L. & Lemmon, V. P. in Assay Guidance Manual (eds. Sittampalam, G. S. et al.) (Eli Lilly & Company and the National Center for Advancing Translational Sciences, Bethesda, MD, 2004).

  103. Coussens, N. P. et al. Assay guidance manual: quantitative biology and pharmacology in preclinical drug discovery. Clin. Transl. Sci. 11, 461–470 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Timm, M., Saaby, L., Moesby, L. & Hansen, E. W. Considerations regarding use of solvents in in vitro cell based assays. Cytotechnology 65, 887–894 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Molleman, A. Patch Clamping: An Introductory Guide to Patch Clamp Electrophysiology (Wiley, Chichester, UK, 2003).

  106. Miyazaki, J. et al. Expression vector system based on the chicken beta-actin promoter directs efficient production of interleukin-5. Gene 79, 269–277 (1989).

    Article  CAS  PubMed  Google Scholar 

  107. Niwa, H., Yamamura, K. & Miyazaki, J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–199 (1991).

    Article  CAS  PubMed  Google Scholar 

  108. Kugler, S., Kilic, E. & Bahr, M. Human synapsin 1 gene promoter confers highly neuron-specific long-term transgene expression from an adenoviral vector in the adult rat brain depending on the transduced area. Gene Ther. 10, 337–347 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Besnard, F. et al. Multiple interacting sites regulate astrocyte-specific transcription of the human gene for glial fibrillary acidic protein. J. Biol. Chem. 266, 18877–18883 (1991).

    CAS  PubMed  Google Scholar 

  110. Dascal, N. & Kahanovitch, U. The roles of Gβγ and Gα in gating and regulation of GIRK channels. Int. Rev. Neurobiol. 123, 27–85 (2015).

    Article  PubMed  Google Scholar 

  111. Dascal, N. Signalling via the G protein-activated K+ channels. Cell. Signal. 9, 551–573 (1997).

    Article  CAS  PubMed  Google Scholar 

  112. Kahanovitch, U., Berlin, S. & Dascal, N. Collision coupling in the GABAB receptor-G protein-GIRK signaling cascade. FEBS Lett. 591, 2816–2825 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Vorobiov, D., Bera, A. K., Keren-Raifman, T., Barzilai, R. & Dascal, N. Coupling of the muscarinic m2 receptor to G protein-activated K(+) channels via Gα(z) and a receptor-Gα(z) fusion protein. Fusion between the receptor and Gα(z) eliminates catalytic (collision) coupling. J. Biol. Chem. 275, 4166–4170 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Reiter, A., Skerra, A., Trauner, D. & Schiefner, A. A photoswitchable neurotransmitter analogue bound to its receptor. Biochemistry 52, 8972–8974 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Rickgauer, J. P. & Tank, D. W. Two-photon excitation of channelrhodopsin-2 at saturation. Proc. Natl. Acad. Sci. USA 106, 15025–15030 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Feldbauer, K. et al. Channelrhodopsin-2 is a leaky proton pump. Proc. Natl. Acad. Sci. USA 106, 12317–12322 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lin, J. Y., Lin, M. Z., Steinbach, P. & Tsien, R. Y. Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys. J. 96, 1803–1814 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. USA 100, 13940–13945 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhang, F. et al. Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat. Neurosci. 11, 631–633 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Schneider, F., Gradmann, D. & Hegemann, P. Ion selectivity and competition in channelrhodopsins. Biophys. J. 105, 91–100 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Prakash, R. et al. Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation. Nat. Methods 9, 1171–1179 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Fenno, L., Yizhar, O. & Deisseroth, K. The development and application of optogenetics. Annu. Rev. Neurosci. 34, 389–412 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wollmuth, L. P. et al. The lurcher mutation identifies delta 2 as an AMPA/kainate receptor-like channel that is potentiated by Ca2+. J. Neurosci. 20, 5973–5980 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wollmuth, L. P. & Sakmann, B. Different mechanisms of Ca2+ transport in NMDA and Ca2+-permeable AMPA glutamate receptor channels. J. Gen. Physiol. 112, 623–636 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Support was provided by the Israel Science Foundation (S.B.; 1096/17 and 438/18). The research submitted was in partial fulfillment of the degree of master of science for I.C. and M.D.B.

Author information

Authors and Affiliations

Authors

Contributions

E.C.C. developed the 2P protocols; M.A.K. designed and synthesized all photoswitches. S.B. performed genetic modifications. S.B. and E.C.C. performed electrophysiology and Ca2+-imaging experiments; S.B., E.C.C. and M.A.K. designed the research project. I.C., M.D.B., L.M., E.C.C., M.A.K. and S.B. wrote the paper.

Corresponding author

Correspondence to Shai Berlin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information Nature Protocols thanks Pau Gorostiza Langa and other (anonymous) reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Levitz, J. et al. Nat. Neurosci. 16, 507–516: https://doi.org/10.1038/nn.3346 (2013)

Berlin, S. et al. Elife 5, e12040: https://doi.org/10.7554/eLife.12040 (2016)

Key data used in this protocol

Carroll, E. C. et al. Proc. Natl. Acad. Sci. USA 112, E776–E785: https://doi.org/10.1073/pnas.1416942112 (2015)

Kienzler, M. A. et al. J. Am. Chem. Soc. 135, 17683–17686: https://doi.org/10.1021/ja408104w (2013)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carmi, I., De Battista, M., Maddalena, L. et al. Holographic two-photon activation for synthetic optogenetics. Nat Protoc 14, 864–900 (2019). https://doi.org/10.1038/s41596-018-0118-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-018-0118-2

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing