Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

You are viewing this page in draft mode.

Generation of lung organoids from human pluripotent stem cells in vitro

Abstract

The lung epithelium is derived from the endodermal germ layer, which undergoes a complex series of endoderm–mesoderm-mediated signaling events to generate the final arborized network of conducting airways (bronchi, bronchioles) and gas-exchanging units (alveoli). These stages include endoderm induction, anterior–posterior and dorsal–ventral patterning, lung specification, lung budding, branching morphogenesis, and, finally, maturation. Here we describe a protocol that recapitulates several of these milestones in order to differentiate human pluripotent stem cells (hPSCs) into ventral–anterior foregut spheroids and further into two distinct types of organoids: human lung organoids and bud tip progenitor organoids. The resulting human lung organoids possess cell types and structures that resemble the bronchi/bronchioles of the developing human airway surrounded by lung mesenchyme and cells expressing alveolar-cell markers. The bud tip progenitor organoids possess a population of highly proliferative multipotent cells with in vitro multilineage differentiation potential and in vivo engraftment potential. Human lung organoids can be generated from hPSCs in 50–85 d, and bud tip progenitor organoids can be generated in 22 d. The two hPSC-derived models presented here have been benchmarked with human fetal tissue and found to be representative of human fetal-like tissue. The bud tip progenitor organoids are thus ideal for exploring epithelial fate decisions, while the human lung organoids can be used to model epithelial–mesenchymal cross-talk during human lung development. In addition to their applications in developmental biology, human lung organoids and bud tip progenitor organoids may be implemented in regenerative medicine, tissue engineering, and pharmaceutical safety and efficacy testing.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic of protocol and timeline.
Fig. 2: Applications of the protocol.
Fig. 3: Human pluripotent stem cell splitting and directed differentiation.
Fig. 4: Common errors and troubleshooting.
Fig. 5: Expected outcomes of the protocol.

Data availability

Some of the data presented in the current study were generated for and published in previous reports. Original data used for figures in this paper are available at the following links: Fig. 2b–d (Dye et al.16), https://doi.org/10.7554/eLife.19732; Figs. 2e and 5g–j (Dye et al.15), https://doi.org/10.7554/eLife.05098; Figs. 2g–i and 5l–r (Miller et al.17), https://doi.org/10.1016/j.stemcr.2017.11.012.

References

  1. 1.

    Zorn, A. M. & Wells, J. M. Vertebrate endoderm development and organ formation. Annu. Rev. Cell Dev. Biol. 25, 221–251 (2009).

    CAS  Article  Google Scholar 

  2. 2.

    Chang, D. R. et al. Lung epithelial branching program antagonizes alveolar differentiation. Proc. Natl. Acad. Sci. USA 110, 18042–18051 (2013).

    CAS  Article  Google Scholar 

  3. 3.

    Rawlins, E. L. Lung epithelial progenitor cells: lessons from development. Proc. Am. Thorac. Soc. 5, 675–681 (2008).

    Article  Google Scholar 

  4. 4.

    Rawlins, E. L., Clark, C. P., Xue, Y. & Hogan, B. L. M. The Id2+ distal tip lung epithelium contains individual multipotent embryonic progenitor cells. Development 136, 3741–3745 (2009).

    CAS  Article  Google Scholar 

  5. 5.

    Spence, J. R. et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470, 105–109 (2011).

    Article  Google Scholar 

  6. 6.

    McCracken, K. W., Howell, J. C., Wells, J. M. & Spence, J. R. Generating human intestinal tissue from pluripotent stem cells in vitro. Nat. Protoc. 6, 1920–1928 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    Múnera, J. O. et al. Differentiation of human pluripotent stem cells into colonic organoids via transient activation of BMP signaling. Cell Stem Cell 21, 51–64 (2017).

    Article  Google Scholar 

  8. 8.

    Tsai, Y.-H. et al. In vitro patterning of pluripotent stem cell-derived intestine recapitulates in vivo human development. Development 144, 1045–1055 (2017).

    CAS  Article  Google Scholar 

  9. 9.

    Hannan, N. R. F., Sampaziotis, F., Segeritz, C.-P., Hanley, N. A. & Vallier, L. Generation of distal airway epithelium from multipotent human foregut stem cells. Stem Cells Dev. 24, 1680–1690 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    Hannan, N. R. F. et al. Generation of multipotent foregut stem cells from human pluripotent stem cells. Stem Cell Rep. 1, 293–306 (2013).

    CAS  Article  Google Scholar 

  11. 11.

    Longmire, T. A. et al. Efficient derivation of purified lung and thyroid progenitors from embryonic stem cells. Stem Cell 10, 398–411 (2012).

    CAS  Google Scholar 

  12. 12.

    Huang, S. X. L. et al. Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nat. Biotechnol. 32, 84–91 (2013).

  13. 13.

    Green, M. D. et al. Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells. Nat. Biotechnol. 29, 267–272 (2011).

    CAS  Article  Google Scholar 

  14. 14.

    Huang, S. X. L. et al. The in vitro generation of lung and airway progenitor cells from human pluripotent stem cells. Nat. Protoc. 10, 413–425 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    Dye, B. R. et al. In vitro generation of human pluripotent stem cell derived lung organoids. Elife 4, e05098 (2015).

    Article  Google Scholar 

  16. 16.

    Dye, B. R. et al. A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids. Elife 5, e19732 (2016).

    Article  Google Scholar 

  17. 17.

    Miller, A. J. et al. In vitro induction and in vivo engraftment of lung bud tip progenitor cells derived from human pluripotent stem cells. Stem Cell Rep. 10, 101–119 (2018).

    CAS  Article  Google Scholar 

  18. 18.

    Cruz-Acuña, R. et al. Synthetic hydrogels for human intestinal organoid generation and colonic wound repair. Nat. Cell Biol. 19, 1326–1335 (2017).

    Article  Google Scholar 

  19. 19.

    Szenker-Ravi, E. et al. RSPO2 inhibition of RNF43 and ZNRF3 governs limb development independently of LGR4/5/6. Nature 557, 564–569 (2018).

    CAS  Article  Google Scholar 

  20. 20.

    Hill, D. R. et al. Bacterial colonization stimulates a complex physiological response in the immature human intestinal epithelium. Elife 6, e29132 (2017).

    Article  Google Scholar 

  21. 21.

    Hill, D. R., Huang, S., Tsai, Y.-H., Spence, J. R. & Young, V. B. Real-time measurement of epithelial barrier permeability in human intestinal organoids. J. Vis. Exp. https://doi.org/10.3791/56960 (2017).

  22. 22.

    Perrin, S. Preclinical research: make mouse studies work. Nature 507, 423–425 (2014).

    Article  Google Scholar 

  23. 23.

    Ruggeri, B. A., Camp, F. & Miknyoczki, S. Animal models of disease: pre-clinical animal models of cancer and their applications and utility in drug discovery. Biochem. Pharmacol. 87, 150–161 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    van der Laan, J. W., Chapin, R. E., Haenen, B., Jacobs, A. C. & Piersma, A. Testing strategies for embryo-fetal toxicity of human pharmaceuticals. Animal models vs. in vitro approaches: a workshop report. Regul. Toxicol. Pharmacol. 63, 115–123 (2012).

    Article  Google Scholar 

  25. 25.

    D’Amour, K. A. et al. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat. Biotechnol. 23, 1534–1541 (2005).

    Article  Google Scholar 

  26. 26.

    Jacob, A. et al. Differentiation of human pluripotent stem cells into functional lung alveolar epithelial cells. Cell Stem Cell 21, 472–488 (2017).

    CAS  Article  Google Scholar 

  27. 27.

    McCauley, K. B. et al. Efficient derivation of functional human airway epithelium from pluripotent stem cells via temporal regulation of Wnt signaling. Cell Stem Cell 20, 844–857 (2017).

    CAS  Article  Google Scholar 

  28. 28.

    Chen, Y.-W. et al. A three-dimensional model of human lung development and disease from pluripotent stem cells. Nat. Cell Biol. 19, 542–549 (2017).

    CAS  Article  Google Scholar 

  29. 29.

    Gotoh, S. et al. Generation of alveolar epithelial spheroids via isolated progenitor cells from human pluripotent stem cells. Stem Cell Rep. 3, 394–403 (2014).

    CAS  Article  Google Scholar 

  30. 30.

    Konishi, S. et al. Directed induction of functional multi-ciliated cells in proximal airway epithelial spheroids from human pluripotent stem cells. Stem Cell Rep. 6, 18–25 (2016).

    CAS  Article  Google Scholar 

  31. 31.

    Hawkins, F. et al. Prospective isolation of NKX2-1-expressing human lung progenitors derived from pluripotent stem cells. J. Clin. Invest. 127, 2277–2294 (2017).

    Article  Google Scholar 

  32. 32.

    Wang, D., Haviland, D. L., Burns, A. R., Zsigmond, E. & Wetsel, R. A. A pure population of lung alveolar epithelial type II cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. USA 104, 4449–4454 (2007).

    CAS  Article  Google Scholar 

  33. 33.

    Firth, A. L. et al. Generation of multiciliated cells in functional airway epithelia from human induced pluripotent stem cells. Proc. Natl. Acad. Sci. USA 111, E1723–E1730 (2014).

    CAS  Article  Google Scholar 

  34. 34.

    Van Haute, L., De Block, G., Liebaers, I., Sermon, K. & De Rycke, M. Generation of lung epithelial-like tissue from human embryonic stem cells. Respir. Res. 10, 105 (2009).

    Article  Google Scholar 

  35. 35.

    Yamamoto, Y. et al. Long-term expansion of alveolar stem cells derived from human iPS cells in organoids. Nat. Methods 14, 1097–1106 (2017).

    CAS  Article  Google Scholar 

  36. 36.

    Nikolić, M. Z. & Rawlins, E. L. Lung organoids and their use to study cell-cell interaction. Curr. Pathobiol. Rep. 5, 223–231 (2017).

    Article  Google Scholar 

  37. 37.

    Miller, A. J. & Spence, J. R. In vitro models to study human lung development, disease and homeostasis. Physiology 32, 246–260 (2017).

    CAS  Article  Google Scholar 

  38. 38.

    Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).

    CAS  Article  Google Scholar 

  39. 39.

    Hannan, N. R. F., Segeritz, C.-P., Touboul, T. & Vallier, L. Production of hepatocyte-like cells from human pluripotent stem cells. Nat. Protoc. 8, 430–437 (2013).

    CAS  Article  Google Scholar 

  40. 40.

    Gjorevski, N. et al. Designer matrices for intestinal stem cell and organoid culture. Nature 539, 560–564 (2016).

    CAS  Article  Google Scholar 

  41. 41.

    Bartfeld, S. & Clevers, H. Organoids as model for infectious diseases: culture of human and murine stomach organoids and microinjection of Helicobacter pylori. J. Vis. Exp. 2015, e53359 (2015).

Download references

Acknowledgements

Research reported in this publication was supported by the National Heart, Lung, and Blood Institute of the National Institutes of Health under award number R01HL119215 to J.R.S. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Affiliations

Authors

Contributions

A.J.M., B.R.D. and J.R.S. conceived the studies. A.J.M., B.R.D., D.F.-T., D.R.H. and A.W.O. performed the experiments. A.J.M., B.R.D., D.F.-T., A.W.O., L.D.S. and J.R.S. analyzed the results. A.J.M. and J.R.S. wrote the manuscript. A.J.M., B.R.D., D.F.-T., A.W.O., D.R.H., L.D.S. and J.R.S. read and edited the manuscript.

Corresponding author

Correspondence to Jason R. Spence.

Ethics declarations

Competing interests

J.R.S., B.R.D. and A.J.M. hold patents pertaining to the lung organoid technologies described. The other authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Miller, A. J. et al. Stem Cell Rep. 10, 101–119 (2018): https://doi.org/10.1016/j.stemcr.2017.11.012

Dye, B. R. et al. eLife 5, e19732 (2016): https://doi.org/10.7554/eLife.19732

Dye, B. R. et al. eLife 4, e05098 (2015): https://doi.org/10.7554/eLife.05098

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miller, A.J., Dye, B.R., Ferrer-Torres, D. et al. Generation of lung organoids from human pluripotent stem cells in vitro. Nat Protoc 14, 518–540 (2019). https://doi.org/10.1038/s41596-018-0104-8

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing