Application of anisotropic NMR parameters to the confirmation of molecular structure


The use of anisotropic NMR data, such as residual dipolar couplings (RDCs) and residual chemical shift anisotropies (RCSAs), has emerged as a powerful technique for structural characterization of organic small molecules. RDCs typically report the relative orientations of different 1H–13C bonds; RCSAs report the relative orientations of different carbon chemical shielding tensors and hence are more useful for proton-deficient molecules. This information is complementary to that obtained from conventional NMR data such as J couplings, isotropic chemical shifts, and nuclear Overhauser effects (NOEs)/rotational frame nuclear Overhauser effects (ROEs). Obtaining anisotropic NMR data requires the creation of an anisotropic sample environment through an alignment medium. Here, we focus on the use of compressed or stretched polymeric gels as two different but fundamentally equivalent methods for introducing sample anisotropy. Protocols are provided for the synthesis of the chloroform-compatible poly(methyl methacrylate) and dimethyl sulfoxide (DMSO)-compatible poly(2-hydroxyethyl methacrylate) gels and sample setup with a preparation time of 2–3 d. The bond-specific RDC data and the atom-specific RCSA data are extracted as changes in 1H–13C couplings and 13C chemical shifts, respectively, between two measurements under different alignment conditions, with a total experimental time of 0.5–4 d. NMR data acquisition and important considerations are described in detail. We also provide step-by-step procedures for the density functional theory (DFT) calculations involved and data analysis using the commercial software MSpin. We use three example compounds, namely cryptospirolepine (505 Da), retrorsine (351 Da), and estrone (270 Da), to demonstrate some important aspects of the workflow, such as input data preparation, handling of structural flexibility, and RCSA data correction when necessary.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2: Making the gel transfer funnel and the stopper for use with the stretching device.
Fig. 3: NMR sample preparation with the compression device.
Fig. 4: NMR sample preparation with the stretching device.
Fig. 5
Fig. 6: Excerpt from the Mspin input and output files for cryptospirolepine (2).
Fig. 7: Single-tensor RCSA computation for retrorsine.
Fig. 8: Flowchart of the structural verification process using retrorsine as an example.


  1. 1.

    Nicolau, K. C. & Snyder, S. A. Chasing molecules that were never there: misassigned natural products and the role of chemical synthesis in modern structure elucidation. Angew. Chem. Int. Ed. Engl. 44, 1012–1044 (2005).

  2. 2.

    Suyama, T. L., Gerwick, W. H. & McPhail, K. L. Survey of marine natural product structure revisions: a synergy of spectroscopy and chemical synthesis. Bioorg. Med. Chem. 19, 6675–6701 (2011).

  3. 3.

    Tantillo, D. J. Walking in the woods with quantum chemistry—applications of quantum chemical calculations in natural product research. Nat. Prod. Rep. 30, 1079–1086 (2013).

  4. 4.

    Kutateladze, A. G. & Reddy, D. S. High-throughput in silico structure validation and revision of halogenated natural products is enabled by parametric corrections to DFT-computed 13C chemical shifts and spin-spin coupling constants. J. Org. Chem. 82, 3368–3381 (2017).

  5. 5.

    Mevers, E. et al. Homodimericin A: a complex hexacyclic fungal metabolite. J. Am. Chem. Soc. 138, 12324–12327 (2016).

  6. 6.

    Elyashberg, M. E., Williams, A. J. & Martin, G. E. Computer-assisted structure verification and elucidation tools in NMR-based structure elucidation. Prog. NMR Spectrosc. 53, 1–108 (2008).

  7. 7.

    Elyashberg, M., Williams, A. & Blinov, K. Contemporary Computer Assisted Approaches to Molecular Structure Characterization (RSC Publishing, London, 2012).

  8. 8.

    Elyashberg, M. E. & Williams, A. J. Computer-Based Structure Elucidation from Spectra Data. (Springer: Heidelberg, Germany, 2015).

  9. 9.

    Saurí, J. et al. Improved 1,1- and 1,n-ADEQUATE: pivotal experiments for the structure revision of cryptospirolepine. Angew. Chem. Int. Ed. Engl. 54, 10160–10164 (2015).

  10. 10.

    Reif, B. et al. ADEQUATE, a new set of experiments to determine the constitution of small molecules at natural abundance. J. Magn. Reson. A 118, 282–285 (1996).

  11. 11.

    Martin, G. E. Using 1,1- and 1,n-ADEQUATE 2D NMR data in structure elucidation protocols in Annual Reports on NMR Spectroscopy Vol. 74 (ed. Webb, G. A.) Ch. 5 (Elsevier, London, 1996).

  12. 12.

    Kummerlöwe, G., Crone, B., Kretschmer, M., Kirsch, S. F. & Luy, B. Residual dipolar couplings as a powerful tool for constitutional analysis: the unexpected formation of tricyclic compounds. Angew. Chem. Int. Ed. Engl. 50, 2643–2645 (2011).

  13. 13.

    Ma, D., Liu, Y. & Wang, Z. Biomimetic total synthesis of (±)-homodimericin A. Angew. Chem. Int. Ed. Engl. 56, 7886–7889 (2017).

  14. 14.

    Yang, Z. et al. Bioinspired total synthesis of homodimericin A. Angew. Chem. Int. Ed. Engl. 56, 7890–7894 (2017).

  15. 15.

    Feng, J., Lei, X., Guo, Z. & Tang, Y. Total synthesis of homodimericin A. Angew. Chem. Int. Ed. Engl. 56, 7895–7899 (2017).

  16. 16.

    Prestegard, J. H., Al-Hashimi, H. M. & Tolman, J. R. NMR structures of biomolecules using field oriented media and residual dipolar couplings. Q. Rev. Biophys. 33, 371–424 (2000).

  17. 17.

    Bax, A. Weak alignment offers new NMR opportunities to study protein structure and dynamics. Protein Sci. 12, 1–16 (2003).

  18. 18.

    Bax, A. & Grishaev, A. Weak alignment NMR: a hawk-eyed view of biomolecular structure. Curr. Opin. Struct. Biol. 15, 563–570 (2005).

  19. 19.

    Yan, J., Kline, A. D., Mo, H., Shapiro, M. J. & Zartler, E. R. A novel method for the determination of stereochemistry in six-membered chair like rings using residual dipolar couplings. J. Org. Chem. 68, 1786–1795 (2003).

  20. 20.

    Yan, J. et al. Complete relative stereochemistry of multiple stereocenters using only residual dipolar couplings. J. Am. Chem. Soc. 126, 5008–5017 (2004).

  21. 21.

    Yan, J. & Zartler, E. R. Application of residual dipolar couplings in organic compounds. Magn. Reson. Chem. 43, 53–64 (2005).

  22. 22.

    Kummerlöwe, G. & Luy, B. Residual dipolar couplings for the configurational and conformational analysis of organic molecules. Ann. Rep. NMR Spectrosc. 68, 193–232 (2009).

  23. 23.

    Gil, R. R., Griesinger, C., Navarro-Vázquez, A. & Sun, H. Structural elucidation of small organic molecules assisted by NMR in aligned media in Structure Elucidation in Organic Chemistry: The Search for the Right Tools (eds. Cid, M.-M. & Bravo, J.) Ch. 8 (Wiley-VCH, Weinheim, Germany, 2015).

  24. 24.

    Gil, R. R. & Navarro-Vázquez, A. Application of residual dipolar couplings to the structural analysis of natural products in Modern NMR Approaches to the Structure Elucidation of Natural Products. Volume 2 Data Acquisition and Applications to Compound Classes (eds. Williams, A., Martin, G. & Rovnyak, D.) Ch. 4 (Royal Society of Chemistry, Cambridge, UK, 2017).

  25. 25.

    Gschwind, R. M. Residual dipolar couplings – a valuable NMR parameter for small organic molecules. Angew. Chem. Int. Ed. Engl. 44, 4666–4668 (2005).

  26. 26.

    Gil, R. R. Constitution, configurational, and conformational analysis of small organic molecules on the basis of NMR residual dipolar couplings. Angew. Chem. Int. Ed. Engl. 50, 7222–7224 (2011).

  27. 27.

    Liu, L.-Y., Sun, H., Griesinger, C. & Liu, J.-K. The use of a combination of RDC and chiroptical spectroscopy for the determination of absolute configuration of fusariumin A from the Fungus Fusarium sp. Nat. Prod. Bioprospect. 6, 41–48 (2016).

  28. 28.

    Schmidt, M. et al. Determining the absolute configuration of (+)-mefloquine HCL, the side-effect reducing enantiomer of the antimalaria drug lariam. J. Am. Chem. Soc. 134, 3080–3083 (2012).

  29. 29.

    Sun, H. et al. Challenge of large-scale motion for residual dipolar coupling based analysis of configuration: the case of fibrosterol sulfate A. J. Am. Chem. Soc. 133, 14629–14636 (2011).

  30. 30.

    Kummerlöwe, G. & Luy, B. Residual dipolar couplings as a tool in determining the structure of organic molecules. Trends Anal. Chem. 28, 483–493 (2009).

  31. 31.

    Thiele, C. M. Use of RDCs in rigid organic compounds and some practical considerations concerning alignment media. Concepts Magn. Reson. 30A, 65–80 (2007).

  32. 32.

    Thiele, C. M. Residual dipolar couplings (RDCs) in organic structure determination. Eur. J. Org. Chem. 34, 5673–5685 (2008).

  33. 33.

    García, M. E. et al. Stereochemistry determination by X-ray diffraction analysis and NMR spectroscopy residual dipolar couplings. Angew. Chem. Int. Ed. Engl. 48, 5670–5675 (2009).

  34. 34.

    Schuetz, A. et al. RDC-enhanced NMR spectroscopy in structure elucidation of sucro-neolambertellin. Angew. Chem. Int. Ed. Engl. 47, 2032–2034 (2008).

  35. 35.

    Schuetz, A. et al. Stereochemistry of sagittamide A from residual dipolar coupling enhanced NMR. J. Am. Chem. Soc. 129, 15114–15115 (2007).

  36. 36.

    Hallwass, F. et al. Residual chemical shift anisotropy (RCSA): a tool for the analysis of the configuration of small molecules. Angew. Chem. Int. Ed. Engl. 50, 9487–9490 (2011).

  37. 37.

    Kummerlöwe, G. et al. Variable angle NMR spectroscopy and its application to the measurement of residual chemical shift anisotropy. J. Magn. Reson. 209, 19–30 (2011).

  38. 38.

    Nath, N. et al. Determination of relative configuration from residual chemical shift anisotropy. J. Am. Chem. Soc. 138, 9548–9556 (2016).

  39. 39.

    Liu, Y. et al. Unequivocal determination of complex molecular structures using anisotropic NMR measurements. Science 356, 43 (2017).

  40. 40.

    Troche-Pesqueira, E., Anklin, C., Gil, R. R. & Navarro-Vázquez, A. Computer-assisted 3D structure elucidation of natural products using residual dipolar couplings. Angew. Chem. Int. Ed. Engl. 129, 3714–3718 (2017).

  41. 41.

    Milanowski, D. J. et al. Unequivocal determination of caulamidines A and B: application and validation of new tools in the structure elucidation tool box. Chem. Sci. 9, 307–314 (2018).

  42. 42.

    Funatsu, K., Del Carpio, C. A. & Sasaki, S. Automated structure elucidation system CHEMICS. Fres. Z. Anal. Chem. 324, 750–759 (1986).

  43. 43.

    Elyashberg, M. E., Blinov, K. A. & Martirosian, E. R. A new approach to computer-aided molecular structure elucidation: the expert system structure elucidator. Lab. Autom. Inf. Manage. 34, 15–30 (1999).

  44. 44.

    Elyashberg, M. E., Blinov, K. A., Williams, A. J., Martirosian, E. R. & Molodtsov, S. G. Application of a new expert system for the structure elucidation of natural products from their 1D and 2D NMR data. J. Nat. Prod. 65, 693–703 (2002).

  45. 45.

    Lindel, T., Junker, J. & Köck, M. 2D-NMR-guided constitutional analysis of organic compounds employing the computer program COCON. Eur. J. Org. Chem. 1999, 573–577 (1999).

  46. 46.

    Köck, M., Junker, J., Maier, W., Will, M. & Lindel, T. A COCON analysis of proton-poor heterocycles – application of carbon chemical shift predictions for the evaluation of structural proposals. Eur. J. Org. Chem. 1999, 579–586 (1999).

  47. 47.

    Plainchont, B. et al. New improvements in automatic structure elucidation using the LSD (logic for structure determination and the SISTEMAT expert systems). Nat. Prod. Commun. 5, 763–770 (2010).

  48. 48.

    Nuzillard, J.-M. & Painchont, B. Tutorial for the structure elucidation of small molecules by means of the LSD software. Magn. Reson. Chem. 56, 458–468 (2018).

  49. 49.

    Mestrelab Research. Mnova Structure Elucidation. (Mestrelab Research, Santiago de Compostela, Spain, 2017).

  50. 50.

    Navarro-Vázquez, A., Gil, R. R. & Blinov, K. Computer-assisted 3D structure elucidation (CASE-3D) of natural products combining isotropic and anisotropic NMR parameters. J. Nat. Prod. 81, 203–210 (2018).

  51. 51.

    Losonczi, J. A., Andrec, M., Fischer, M. W. F. & Prestegard, J. H. Order matrix analysis of residual dipolar couplings using singular value decomposition. J. Magn. Reson. 138, 334–342 (1999).

  52. 52.

    Navarro-Vázquez, A. MSpin-RDC. A program for the use of residual dipolar couplings for structure elucidation of small molecules. Magn. Reson. Chem. 50, S73–S79 (2012).

  53. 53.

    Cornilescu, G., Marquardt, J. L., Ottiger, M. & Bax, A. Validation of protein structure from anisotropic carbonyl chemical shifts in a dilute liquid crystalline phase. J. Am. Chem. Soc. 120, 6836–6837 (1998).

  54. 54.

    Liu, Y., Cohen, R. D., Martin, G. E. & Williamson, R. T. A practical strategy for the accurate measurement of residual dipolar couplings in strongly aligned small molecules. J. Magn. Reson. 261, 63–72 (2018).

  55. 55.

    Meddour, A., Berdague, P., Hedli, A., Courtieu, J. & Lesot, P. Proton-decoupled carbon-13 NMR spectroscopy in a lyotropic chiral nematic solvent as an analytical tool for the measurement of the enantiomeric excess. J. Am. Chem. Soc. 119, 4502–4508 (1997).

  56. 56.

    Canet, I., Courtieu, J., Loewenstein, A., Meddour, A. & Pechine, J. M. Enantiomeric analysis in a polypeptide lyotropic liquid crystal by deuterium NMR. J. Am. Chem. Soc. 117, 6520–6526 (1995).

  57. 57.

    Marx, A. & Thiele, C. Orientational properties of poly-gamma-benzyl-l-glutamate: influence of molecular weight and solvent on order parameters of the solute. Chem. Eur. J. 15, 254–260 (2009).

  58. 58.

    Meyer, N.-C. et al. Polyacetylenes as enantiodifferentiating alignment media. Angew. Chem. Int. Ed. Engl. 51, 8334–8338 (2012).

  59. 59.

    Lei, X. et al. Graphene oxide liquid crystals as a versatile and tunable alignment medium for the measurement of residual dipolar couplings in organic solvents. J. Am. Chem. Soc. 136, 11280–11283 (2014).

  60. 60.

    Zong, W. et al. An alignment medium for measuring residual dipolar couplings in pure DMSO: liquid crystals from graphene oxide grafted with polymer brushes. Angew. Chem. Int. Ed. Engl. 55, 3690–3693 (2016).

  61. 61.

    Luy, B., Kobzar, K. & Kessler, H. An easy and scalable method for the partial alignment of organic molecules for measuring residual dipolar couplings. Angew. Chem. Int. Ed. Engl. 43, 1092–1094 (2004).

  62. 62.

    Haberz, P., Farjon, J. & Griesinger, C. A DMSO-compatible orienting medium: towards the investigation of the stereochemistry of natural products. Angew. Chem. Int. Ed. Engl. 44, 427–429 (2005).

  63. 63.

    Gil, R. R., Gayathri, C., Tsarevsky, N. V. & Matyjaszewski, K. Stretched poly(methyl methacrylate) gel aligns small organic molecules in chloroform. Stereochemical analysis and diastereotopic proton NMR assignment in ludartin using residual dipolar couplings and 3 J coupling constant analysis. J. Org. Chem. 73, 840–848 (2008).

  64. 64.

    Gil-Silva, L. F., Santamaría-Fernández, R., Navarro-Vázquez, A. & Gil, R. R. Collection of NMR scalar and residual dipolar couplings using a single experiment. Chem. Eur. J. 22, 472–476 (2016).

  65. 65.

    García, M. E. et al. Di(ethylene glycol) methyl ether methacrylate (DEGMEMA)-derived gels align small organic molecules in methanol. Magn. Reson. Chem. 55, 206–209 (2017).

  66. 66.

    Kummerlöwe, G., Auernheimer, J., Lendlein, A. & Luy, B. Stretched poly(acrylonitrile) as a scalable alignment medium for DMSO. J. Am. Chem. Soc. 129, 6080–6081 (2007).

  67. 67.

    Kuchel, P. W. et al. Apparatus for rapid adjustment of the degree of alignment of NMR samples in aqueous media: verification with residual quadrupolar splittings in 23Na and 133Cs spectra. J. Magn. Reson. 180, 256–265 (2006).

  68. 68.

    Kummerlöwe, G. et al. Tunable alignment for all polymer gel/solvent combinations for the measurement of anisotropic NMR parameters. Chem. Eur. J. 16, 7087–7089 (2010).

  69. 69.

    Gayathri, C., Tsarevsky, N. V. & Gil, R. R. Residual dipolar couplings (RDCs) analysis of small molecules made easy: fast and tuneable alignment by reversible compression/relaxation of reusable PMMA gels. Chem. Eur. J. 16, 3622–3626 (2010).

  70. 70.

    Kramer, F., Deshmukh, M. V., Kessler, H. & Glaser, S. J. Residual dipolar coupling constants: an elementary derivation of key equations. Concepts Magn. Reson. A 21, 10–21 (2004).

  71. 71.

    Lucas, N. J. D. The influence of vibrations on molecular structure determinations from N.M.R. in liquid crystals. Mol. Phys. 22, 147–154 (1971).

  72. 72.

    Emsley, J. W. & Lindon, J. C. The effect of vibrational averaging on the geometry of cyclobutadiene iron tricarbonyl derived from the proton N.M.R. spectrum of a nematic solution. Mol. Phys. 28, 1373–1375 (1974).

  73. 73.

    Burnell, E. E. & De Lange, C. A. Effects of interaction between molecular internal motion and reorientation on NMR of anisotropic liquids. J. Magn. Reson. 39, 461–480 (1980).

  74. 74.

    Liu, Y. & Prestegard, J. H. A device for the measurement of residual chemical shift anisotropy and residual dipolar coupling in soluble and membrane-associated proteins. J. Biomol. NMR 47, 249–258 (2010).

  75. 75.

    Luy, B. Distinction of enantiomers by NMR spectroscopy using chiral orienting media. J. Indian Inst. Sci. 90, 119–132 (2010).

  76. 76.

    Lesot, P. & Courtieu, J. Natural abundance deuterium NMR spectroscopy. Developments and analytical applications in liquids, liquid crystals and solid phases. Prog. Nucl. Magn. Reson. Spectrosc. 55, 128–159 (2009).

  77. 77.

    Lei, X. et al. A self-assembled oligopeptide as a versatile NMR alignment medium for the measurement of residual dipolar couplings in methanol. Angew. Chem. Int. Ed. Engl. 56, 12857–12861 (2017).

  78. 78.

    Arnold, L., Marx, A., Thiele, C. M. & Reggelin, M. Polyguanidines as chiral orienting media for organic compounds. Chem. Eur. J. 16, 10342–10346 (2010).

  79. 79.

    Krupp, A. & Reggelin, M. Phenylalanine-based polyarylacetylenes as enantiomer-differentiating alignment media. Magn. Reson. Chem. 50, S45–S52 (2012).

  80. 80.

    Deloche, B. & Samulski, E. T. Short-range nematic-like orientational order in strained elastomers: a deuterium magnetic resonance study. Macromolecules 14, 575–581 (1981).

  81. 81.

    Tycko, R., Blanco, F. J. & Ishii, Y. Alignment of biopolymers in strained gels: a new way to create detectable dipole-dipole couplings in high-resolution biomolecular NMR. J. Am. Chem. Soc. 122, 9340–9341 (2000).

  82. 82.

    Sass, H.-J. et al. Solution NMR of proteins within polyacrylamide gels: diffusional properties and residual alignment by mechanical stress or embedding of oriented purple membranes. J. Biomol. NMR 18, 303–309 (2000).

  83. 83.

    Chou, J. et al. A simple apparatus for generating stretched polyacrylamide gels, yielding uniform alignment of proteins and detergent micelles. J. Biomol. NMR 21, 377–382 (2001).

  84. 84.

    Merle, C. et al. Crosslinked poly(ethylene oxide) as a versatile alignment medium for the measurement of residual anisotropic NMR parameters. Angew. Chem. Int. Ed. Engl. 52, 10309–10312 (2013).

  85. 85.

    Helleman, E. et al. Mechanical behavior of polymer gels for RDCs and RCSAs collection: NMR imaging study of buckling phenomena. Chem. Eur. J. 22, 16632–16635 (2016).

  86. 86.

    Hallwass, F. et al. Measurement of residual chemical shift anisotropies in compressed polymethylmethacrylate gels. Automatic compensation of gel isotropic shift contribution. Magn. Reson. Chem. 56, 321–328 (2018).

  87. 87.

    Liu, Y. et al. Enhanced measurement of residual chemical shift anisotropy for small molecule structure elucidation. Chem. Commun. 54, 4254–4257 (2018).

  88. 88.

    Enthart, A. et al. The CLIP/CLAP-HSQC: pure absorptive spectra for the measurement of one-bond couplings. J. Magn. Reson. 192, 314–322 (2008).

  89. 89.

    Yu, B. et al. More accurate 1 J(CH) coupling measurement in the presence of 3 J(HH) strong coupling in natural abundance. J. Magn. Reson. 215, 10–22 (2012).

  90. 90.

    Castañar, L. et al. One-shot determination of residual dipolar couplings: application to the structural discrimination of small molecules containing multiple stereocenters. J. Org. Chem. 81, 11126–11131 (2016).

  91. 91.

    Furrer, J., John, M., Kessler, H. & Luy, B. J-Spectroscopy in the presence of residual dipolar couplings: determination of one-bond coupling constants and scalable resolution. J. Biomol. NMR 37, 231–243 (2007).

  92. 92.

    Garbow, J. R., Weitekamp, D. P. & Pines, A. Bilinear rotation decoupling of homonuclear scalar interactions. Chem. Phys. Lett. 93, 504–509 (1982).

  93. 93.

    Thiele, C. M. & Bermel, W. Speeding up the measurement of one-bond scalar (1 J) and residual dipolar couplings (1 D) by using non-uniform sampling (NUS). J. Magn. Reson. 216, 134–143 (2012).

  94. 94.

    Paudel, L. et al. Simultaneously enhancing spectral resolution and sensitivity in heteronuclear correlation NMR spectroscopy. Angew. Chem. Int. Ed. Engl. 52, 11616–11619 (2013).

  95. 95.

    Schrödinger. Schrödinger Release 2017-4: Maestro, (Schrödinger, New York, 2017).

  96. 96.

    Chang, G., Guida, W. C. & Still, W. C. An internal-coordinate Monte Carlo method for searching conformational space. J. Am. Chem. Soc. 111, 4379–4386 (1989).

  97. 97.

    Sánchez-Pedregal, V. M., Santamaría-Fernández, R. & Navarro-Vázquez, A. Residual dipolar couplings of freely rotating groups in small molecules. Stereochemical assignment and side-chain conformation of 8-phenylmenthol. Org. Lett. 11, 1471–1474 (2009).

  98. 98.

    Thiele, C. M. et al. On the treatment of conformational flexibility when using residual dipolar couplings for structure determination. Angew. Chem. Int. Ed. Engl. 48, 6708–6712 (2009).

  99. 99.

    Schreckenbach, G. & Ziegler, T. Density functional calculations of NMR chemical shifts and ESR g-tensors. Theor. Chem. Acc. 99, 71–82 (1998).

  100. 100.

    Adamo, C. & Barone, B. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters. The mPW and mPW1PW models. J. Chem. Phys. 108, 664–675 (1998).

  101. 101.

    Lodewyk, M. W., Siebert, M. R. & Tantillo, D. J. Computational prediction of 1H and 13C chemical shifts: a useful tool for natural product, mechanistic, and synthetic organic chemistry. Chem. Rev. 112, 1839–1862 (2012).

  102. 102.

    Navarro-Vázquez, A. State of the art and perspectives in the application of quantum chemical prediction of 1H and 13C chemical shifts and scalar couplings for structural elucidation of organic compounds. Magn. Reson. Chem. 55, 29–32 (2017).

  103. 103.

    França, J. A. A. et al. Complete NMR assignment and conformational analysis of 17-α-ethinylestradiol by using RDCs obtained in grafted graphene oxide. Magn. Reson. Chem. 55, 297–303 (2017).

  104. 104.

    Navarro-Vázquez, A., Berdagué, P. & Lesot, P. G. J. Integrated computational protocol for analyzing quadrupolar splittings from natural abundance deuterium NMR spectra in (chiral) oriented media. ChemPhysChem 18, 1252–1266 (2017).

  105. 105.

    Tackie, A. N. et al. Cryptospirolepine—a unique spirononacyclic alkaloid isolated from Cryptolepis sanguinolenta. J. Nat. Prod. 56, 653–670 (1993).

  106. 106.

    Frisch, M. J. et al. Gaussian 09, (Gaussian, Wallingford, CT, 2009).

  107. 107.

    Willoughby, P. H., Jansma, M. J. & Hoyce, T. R. A guide to small-molecule structure assignment through computation of (1H and 13C) NMR chemical shifts. Nat. Protoc. 9, 643–660 (2014).

  108. 108.

    O’Boyle, N. M. et al. Open Babel: an open chemical toolbox. J. Cheminform. 3, 33 (2011).

  109. 109.

    Trigo-Mouriño, P. et al. Structural discrimination in small molecules by accurate measurement of long-range proton-carbon NMR residual dipolar couplings. Angew. Chem. Int. Ed. Engl. 50, 7576–7580 (2011).

  110. 110.

    Nath, N., d’Auvergne, E. J. & Griesinger, C. Long range residual dipolar couplings: a tool for determining the configuration of small molecules. Angew. Chem. Intl. Ed. Engl. 54, 12706–12710 (2015).

  111. 111.

    Tzvetkova, P., Luy, B. & Simova, S. Configuration verification via RDCs on the example of a tetra-substituted pyrrolidine ring. Magn. Reson. Chem. 50, S92–S101 (2012).

Download references


Y.L., G.E.M., and R.T.W. thank I.E. Ndukwe for work on polymeric gel preparation. A.N.-V. thanks FACEPE (APQ-0507-1.06/15) for financial support. R.R.G. thanks the National Science Foundation for financial support (CHE-1111684). C.G. acknowledges support by the Max Planck Society and the DFG Forschergruppe (DFG FOR 934), as well as the extremely fruitful interactions with the members of this Forschergruppe: M. Reggelin (Darmstadt), M. Köck (Bremerhaven), C. Thiele (Darmstadt), B. Luy (Karlsruhe), and M. Zweckstetter and U. Reinscheid (both from Göttingen). A.N.-V., C.G., and R.R.G. also acknowledge the PhD students, postdoctoral fellows, and colleagues involved in small-molecule anisotropic NMR over the years in their laboratories: L. Verdier, P. Haberz, M. Schmidt, P. Trigo-Mouriño, E. d’Auvergne, H. Sun, N. Nath, J. C. Fuentes, S. B. P. Vemulapalli, N. Karschin, R. Santamaría-Fernández, E. Troche-Pesqueira, L. Gil-Silva, N. V. Tsarevsky, and V. Sánchez-Pedregal.

Author information

G.E.M. and R.T.W. conceived the idea of writing this protocol; Y.L. and A.N.-V. contributed equally to manuscript writing. G.E.M. contributed the introduction and proposed the organization of the manuscript. R.R.G. contributed backgrounds and methods in gel preparation and gel compression. C.G. contributed theoretical background. All authors contributed to manuscript editing. G.E.M. coordinated the writing of the manuscript.

Correspondence to Yizhou Liu or Armando Navarro-Vázquez.

Ethics declarations

Competing interests

A.N.-V. is the author of MSpin and StereoFitter, which are mentioned in the article, and receives royalties from sales of these products. The other authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Nath, N. et al. J. Am. Chem. Soc. 138, 9548–9556 (2016):

Liu, Y. et al. Science 356, eaam5349 (2017):

Troche-Pesqueira, E., Anklin, C., Gil, R. R. & Navarro-Vázquez, A. Angew. Chem. Int. Ed. Engl. 56, 3660–3664 (2017):

Supplementary information

Supplementary Methods

Input and output files from MSpin for all of the examples used in this protocol, as well as a step-by-step description of the estrone case

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Navarro-Vázquez, A., Gil, R.R. et al. Application of anisotropic NMR parameters to the confirmation of molecular structure. Nat Protoc 14, 217–247 (2019).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.