Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Efficient and irreversible antibody–cysteine bioconjugation using carbonylacrylic reagents


There is considerable interest in the development of chemical methods for the precise, site-selective modification of antibodies for therapeutic applications. In this protocol, we describe a strategy for the irreversible and selective modification of cysteine residues on antibodies, using functionalized carbonylacrylic reagents. This protocol is based on a thiol–Michael-type addition of native or engineered cysteine residues to carbonylacrylic reagents equipped with functional compounds such as cytotoxic drugs. This approach is a robust alternative to the conventional maleimide technique; the reaction is irreversible and uses synthetically accessible reagents. Complete conversion to the conjugates, with improved quality and homogeneity, is often achieved using a minimal excess (typically between 5 and 10 equiv.) of the carbonylacrylic reagent. Potential applications of this method cover a broad scope of cysteine-tagged antibodies in various formats (full-length IgGs, nanobodies) for the site-selective incorporation of cytotoxic drugs without loss of antigen-binding affinity. Both the synthesis of the carbonylacrylic reagent armed with a synthetic molecule of interest and the subsequent preparation of the chemically defined, homogeneous antibody conjugate can be achieved within 48 h and can be easily performed by nonspecialists. Importantly, the conjugates formed are stable in human plasma. The use of liquid chromatography–mass spectrometry (LC–MS) analysis is recommended for monitoring the progression of the bioconjugation reactions on protein and antibody substrates with accurate resolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A general approach for cysteine selective and irreversible bioconjugation of antibodies.
Fig. 2: Antibody–cysteine bioconjugation with carbonylacrylic reagent 1.
Fig. 3: Synthesis of carbonylacrylic reagents bearing the desired payload for site-selective antibody–cysteine bioconjugation.
Fig. 4: Synthesis of a functional ADC through site-selective conjugation with caa-ValCit-PAB-MMAE 2.
Fig. 5: Construction of homogeneous ADCs through cysteine-selective conjugation with caa-ValCit-PAB-MMAE (2) and caa-crizotinib (3).

Similar content being viewed by others


  1. Chudasama, V., Maruani, A. & Caddick, S. Recent advances in the construction of antibody–drug conjugates. Nat. Chem. 8, 114–119 (2016).

    Article  CAS  Google Scholar 

  2. Xue, L., Karpenko, I. A., Hiblot, J. & Johnsson, K. Imaging and manipulating proteins in live cells through covalent labeling. Nat. Chem. Biol. 11, 917–923 (2015).

    Article  CAS  Google Scholar 

  3. Rodrigues, T. & Bernardes, G. J. L. The missing link. Nat. Chem. 8, 1088–1090 (2016).

    Article  CAS  Google Scholar 

  4. Krall, N., da Cruz, F. P., Boutureira, O. & Bernardes, G. J. L. Site-selective protein-modification chemistry for basic biology and drug development. Nat. Chem. 8, 103–113 (2015).

    Article  Google Scholar 

  5. MacDonald, J. I., Munch, H. K., Moore, T. & Francis, M. B. One-step site-specific modification of native proteins with 2-pyridinecarboxyaldehydes. Nat. Chem. Biol. 11, 326–331 (2015).

    Article  CAS  Google Scholar 

  6. Vinogradova, E. V., Zhang, C., Spokoyny, A. M., Pentelute, B. L. & Buchwald, S. L. Organometallic palladium reagents for cysteine bioconjugation. Nature 526, 687–691 (2015).

    Article  CAS  Google Scholar 

  7. Boutureira, O. & Bernardes, G. J. L. Advances in chemical protein modification. Chem. Rev. 115, 2174–2195 (2015).

    Article  CAS  Google Scholar 

  8. Matos, M. J. et al. Chemo- and regioselective lysine modification on native proteins. J. Am. Chem. Soc. 140, 4004–4017 (2018).

    Article  CAS  Google Scholar 

  9. Beck, A., Goetsch, L., Dumontet, C. & Corvaïa, N. Strategies and challenges for the next generation of antibody–drug conjugates. Nat. Rev. Drug Discov. 16, 315–337 (2017).

    Article  CAS  Google Scholar 

  10. Sievers, E. L. & Senter, P. D. Antibody-drug conjugates in cancer therapy. Ann. Rev. Med. 64, 15–29 (2013).

    Article  CAS  Google Scholar 

  11. Bernardim, B. et al. Stoichiometric and irreversible cysteine-selective protein modification using carbonylacrylic reagents. Nat. Commun. 7, 13128 (2016).

    Article  CAS  Google Scholar 

  12. Junutula, J. R. et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat. Biotechnol. 26, 925–932 (2008).

    Article  CAS  Google Scholar 

  13. Stenton, B. J., Oliveira, B. L., Matos, M. J., Sinatra, L. & Bernardes, G. J. L. A thioether-directed palladium-cleavable linker for targeted bioorthogonal drug decaging. Chem. Sci. 9, 4185–4189 (2018).

    Article  CAS  Google Scholar 

  14. Rosen, C. B. & Francis, M. B. Targeting the N terminus for site-selective protein modification. Nat. Chem. Biol. 13, 697–705 (2017).

    Article  CAS  Google Scholar 

  15. Chalker, J. M., Bernardes, G. J. L., Lin, Y. A. & Davis, B. G. Chemical modification of proteins at cysteine: opportunities in chemistry and biology. Chem. Asian J. 4, 630–640 (2009).

    Article  CAS  Google Scholar 

  16. Pimenta Góis, P. M., Ravasco, J., Faustino, H. & Trindade, A. Bioconjugation with maleimides: a useful tool for chemical biology. Chem. Eur. J. doi:10.1002/chem.201803174 (2018).

  17. Kalia, D., Malekar Pushpa, V. & Parthasarathy, M. Exocyclic olefinic maleimides: synthesis and application for stable and thiol‐selective bioconjugation. Angew. Chem. Int. Ed. Engl. 55, 1432–1435 (2015).

    Article  Google Scholar 

  18. Lyon, R. P. et al. Self-hydrolyzing maleimides improve the stability and pharmacological properties of antibody-drug conjugates. Nat. Biotechnol. 32, 1059–1062 (2014).

    Article  CAS  Google Scholar 

  19. Vaneycken, I. et al. Preclinical screening of anti-HER2 nanobodies for molecular imaging of breast cancer. FASEB J. 25, 2433–2446 (2011).

    Article  CAS  Google Scholar 

  20. Lyon, R. P. et al. Reducing hydrophobicity of homogeneous antibody-drug conjugates improves pharmacokinetics and therapeutic index. Nat. Biotechnol. 33, 733–735 (2015).

    Article  CAS  Google Scholar 

  21. Freedy, A. M. et al. Chemoselective installation of amine bonds on proteins through aza-Michael ligation. J. Am. Chem. Soc. 139, 18365–18375 (2017).

    Article  CAS  Google Scholar 

  22. Levengood, M. R. et al. Orthogonal cysteine protection enables homogeneous multi-drug antibody–drug conjugates. Angew. Chem. Int. Ed. Engl. 56, 733–737 (2017).

    Article  CAS  Google Scholar 

  23. Senter, P. D. & Sievers, E. L. The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Nat. Biotechnol. 30, 631–637 (2012).

    Article  CAS  Google Scholar 

  24. Carl, P. L., Chakravarty, P. K. & Katzenellenbogen, J. A. A novel connector linkage applicable in prodrug design. J. Med. Chem. 24, 479–480 (1981).

    Article  CAS  Google Scholar 

  25. Cui, J. J. et al. Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal–epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J. Med. Chem. 54, 6342–6363 (2011).

    Article  CAS  Google Scholar 

  26. Brack, S. S., Silacci, M., Birchler, M. & Neri, D. Tumor-targeting properties of novel antibodies specific to the large isoform of tenascin-c. Clin. Cancer Res. 12, 3200–3208 (2006).

    Article  CAS  Google Scholar 

  27. Heuveling, D. A. et al. Phase 0 microdosing PET study using the human mini antibody F16SIP in head and neck cancer patients. J. Nucl. Med. 54, 397–401 (2013).

    Article  CAS  Google Scholar 

  28. Gébleux, R., Stringhini, M., Casanova, R., Soltermann, A. & Neri, D. Non‐internalizing antibody–drug conjugates display potent anti‐cancer activity upon proteolytic release of monomethyl auristatin E in the subendothelial extracellular matrix. Int. J. Cancer 140, 1670–1679 (2016).

    Article  Google Scholar 

Download references


We thank FAPESP (BEPE 2015/07509-1 and 2017/13168-8 to B.B., and 2013/25504-1 to A.C.B.B.), Xunta de Galicia (M.J.M.), FCT Portugal (FCT Investigator to G.J.L.B., IF/00624/2015), the EU (Marie Sklodowska-Curie ITN Protein Conjugates, GA 675007, including a PhD Studentship to X.F.), the Ministerio de Economía y Competitividad (projects CTQ2015-67727-R and UNLR13-4E-1931 to F.C. and CTQ2015-70524-R and RYC-2013-14706 to G.J.O.) and the Universidad de La Rioja (FPI Studentship to I.C.). We also thank S. Massa and N. Devoogdt (Vrije Universiteit Brussel (VUM), Brussels) for the generous gift of the Her2-targeting nanobody 2Rb17c, Genentech for providing Thiomab LC-V205C and trastuzumab antibodies, and D. Neri’s laboratory (Swiss Federal Institute of Technology (ETH Zürich), Zurich) for the generous gift of the F16 antibody. G.J.L.B. is a Royal Society University Research Fellow (UF110046 and URF/R/180019) and the recipient of a European Research Council Starting Grant (TagIt, GA 676832).

Author information

Authors and Affiliations



G.J.L.B. designed and supervised the research. B.B. and M.J.M. performed reactions on antibodies and MS analysis. F.C., X.F. and I.C. designed and performed the synthesis of caa-ValCit-PAB-MMAE and caa-crizotinib. A.G. and P.A. studied antibody binding and performed flow cytometry analysis. A.C.B.B. and G.J.-O. contributed to the design of the carbonylacrylic reagent. B.B. and G.J.L.B. wrote the paper with contributions from all authors.

Corresponding author

Correspondence to Gonçalo J. L. Bernardes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Stenton, B. J., Oliveira, B. L., Matos, M. J., Sinatra, L. & Bernardes, G. J. L. Chem. Sci. 9, 4185–4189 (2018):!divAbstract

Bernardim, B. et al. Nat. Commun. 7, 13128 (2016):

Supplementary information

Supplementary Information

Supplementary Figures 1–25 and Supplementary Methods

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernardim, B., Matos, M.J., Ferhati, X. et al. Efficient and irreversible antibody–cysteine bioconjugation using carbonylacrylic reagents. Nat Protoc 14, 86–99 (2019).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research