Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Modular approach for resolving and mapping complex neural and other cellular structures and their associated deformation fields in three dimensions

Abstract

Understanding the biological implications of cellular mechanotransduction, especially in the context of pathogenesis, requires the accurate resolution of material deformation and strain fields surrounding the cells. This is particularly challenging for cells displaying branched, 3D architectures. Here, we provide a modular approach for 3D image segmentation and strain mapping of topologically complex structures. We describe how to use our approach, using neural cells and networks as an example. In addition to describing how to implement the computational analysis, we provide details of a cell culture protocol that can be used to generate neural networks for analysis and experimentation. This protocol allows for transformation of matrix-induced strains, and their full resolution across single cells or networks in three dimensions. The protocol also provides analyses to compute both the locally varying cytoskeletal strains and the average strain experienced by cells. An additional module allows spatial correlation of these strain maps with cytoskeletal features, including neurite disruptions such as neuronal blebs. Image processing and strain mapping take ≥3 h, with the exact time required being dependent on use case, software familiarity, and file size.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The culture platform and the resulting fiber and cell networks.
Fig. 2: Maximum intensity–projected confocal micrographs showing immunofluorescent signals of cells.
Fig. 3: Images of critical steps during dissection and sample preparation.
Fig. 4: Image processing workflow.
Fig. 5: Neuron tree projected in 3D with descriptors of tree structure node classifications.
Fig. 6: Example strain mappings.
Fig. 7: Control viability data and representative projection.

Similar content being viewed by others

References

  1. Nelson, C. M. et al. Emergent patterns of growth controlled by multicellular form and mechanics. Proc. Natl. Acad. Sci. USA 102, 11594–11599 (2005).

    Article  CAS  Google Scholar 

  2. Thery, M. et al. The extracellular matrix guides the orientation of the cell division axis. Nat. Cell Biol. 7, 947–953 (2005).

    Article  CAS  Google Scholar 

  3. Mammoto, T. & Ingber, D. E. Mechanical control of tissue and organ development. Development 137, 1407–1420 (2010).

    Article  CAS  Google Scholar 

  4. Guilak, F. et al. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5, 17–26 (2009).

    Article  CAS  Google Scholar 

  5. Friedl, P. & Wolf, K. Plasticity of cell migration: a multiscale tuning model. J. Cell Biol. 188, 11–19 (2010).

    Article  CAS  Google Scholar 

  6. LaPlaca, M. C., Cullen, D. K., McLoughlin, J. J. & Cargill, R. S. 2nd High rate shear strain of three-dimensional neural cell cultures: a new in vitro traumatic brain injury model. J. Biomech. 38, 1093–1105 (2005).

    Article  Google Scholar 

  7. Petrie, R. J., Doyle, A. D. & Yamada, K. M. Random versus directionally persistent cell migration. Nat. Rev. Mol. Cell. Biol. 10, 538–549 (2009).

    Article  CAS  Google Scholar 

  8. Briggs, J. A. et al. The dynamics of gene expression in vertebrate embryogenesis at single-cell resolution. Science 360, eaar5780 (2018).

    Article  Google Scholar 

  9. Bar-Kochba, E., Scimone, M. T., Estrada, J. B. & Franck, C. Strain and rate-dependent neuronal injury in a 3D in vitro compression model of traumatic brain injury. Sci. Rep. 6, 30550 (2016).

    Article  CAS  Google Scholar 

  10. Butler, J. P., Tolic-Norrelykke, I. M., Fabry, B. & Fredberg, J. J. Traction fields, moments, and strain energy that cells exert on their surroundings. Am. J. Physiol. Cell Physiol. 282, C595–C605 (2002).

    Article  CAS  Google Scholar 

  11. Legant, W. R. et al. Measurement of mechanical tractions exerted by cells in three-dimensional matrices. Nat. Methods 7, 969–971 (2010).

    Article  CAS  Google Scholar 

  12. Toyjanova, J. et al. High resolution, large deformation 3D traction force microscopy. PLoS ONE 9, e90976 (2014).

    Article  Google Scholar 

  13. Chaudhuri, O. et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15, 326–334 (2016).

    Article  CAS  Google Scholar 

  14. Madl, C. M. et al. Maintenance of neural progenitor cell stemness in 3D hydrogels requires matrix remodelling. Nat. Mater. 16, 1233–1242 (2017).

    Article  CAS  Google Scholar 

  15. Rodriguez, A., Ehlenberger, D. B., Dickstein, D. L., Hof, P. R. & Wearne, S. L. Automated three-dimensional detection and shape classification of dendritic spines from fluorescence microscopy images. PLoS ONE 3, e1997 (2008).

    Article  Google Scholar 

  16. Rodriguez, A., Ehlenberger, D. B., Hof, P. R. & Wearne, S. L. Rayburst sampling, an algorithm for automated three-dimensional shape analysis from laser scanning microscopy images. Nat. Protoc. 1, 2152–2161 (2006).

    Article  CAS  Google Scholar 

  17. Miller, K. & Chinzei, K. Mechanical properties of brain tissue in tension. J. Biomech. 35, 483–490 (2002).

    Article  Google Scholar 

  18. Prange, M. T. & Margulies, S. S. Regional, directional, and age-dependent properties of the brain undergoing large deformation. J. Biomech. Eng. 124, 244–252 (2002).

    Article  Google Scholar 

  19. Cloots, R. J., van Dommelen, J. A., Nyberg, T., Kleiven, S. & Geers, M. G. Micromechanics of diffuse axonal injury: influence of axonal orientation and anisotropy. Biomech. Model. Mechanobiol. 10, 413–422 (2011).

    Article  CAS  Google Scholar 

  20. Chavko, M. et al. Relationship between orientation to a blast and pressure wave propagation inside the rat brain. J. Neurosci. Methods 195, 61–66 (2011).

    Article  Google Scholar 

  21. Tibbitt, M. W. & Anseth, K. S. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 103, 655–663 (2009).

    Article  CAS  Google Scholar 

  22. Petersen, O. W., Ronnovjessen, L., Howlett, A. R. & Bissell, M. J. Interaction with basement-membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial-cells. Proc. Natl. Acad. Sci. USA 89, 9064–9068 (1992).

    Article  CAS  Google Scholar 

  23. Bosi, S. et al. From 2D to 3D: novel nanostructured scaffolds to investigate signalling in reconstructed neuronal networks. Sci. Rep. 5, 9562 (2015).

    Article  CAS  Google Scholar 

  24. Hopkins, A. M., DeSimone, E., Chwalek, K. & Kaplan, D. L. 3D in vitro modeling of the central nervous system. Prog. Neurobiol. 125, 1–25 (2015).

    Article  Google Scholar 

  25. Morrison, B., Cater, H. L., Benham, C. D. & Sundstrom, L. E. An in vitro model of traumatic brain injury utilising two-dimensional stretch of organotypic hippocampal slice cultures. J. Neurosci. Methods 150, 192–201 (2006).

    Article  Google Scholar 

  26. Lossi, L., Alasia, S., Salio, C. & Merighi, A. Cell death and proliferation in acute slices and organotypic cultures of mammalian CNS. Prog. Neurobiol. 88, 221–245 (2009).

    Article  Google Scholar 

  27. Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373-379 (2013).

    Article  Google Scholar 

  28. Dingle, Y. T. L. et al. Three-dimensional neural spheroid culture: an in vitro model for cortical studies. Tissue Eng. Part C Methods 21, 1274–1283 (2015).

    Article  CAS  Google Scholar 

  29. Boutin, M. E. et al. A three-dimensional neural spheroid model for capillary-like network formation. J. Neurosci. Methods 299, 55–63 (2018).

    Article  Google Scholar 

  30. Berthiaume, F. & Morgan, J. R. (eds) Methods in Bioengineering: 3D Tissue Engineering (Artech House, Norwood, MA, 2010).

  31. Cullen, D. K., Vernekar, V. N. & LaPlaca, M. C. Trauma-induced plasmalemma disruptions in three-dimensional neural cultures are dependent on strain modality and rate. J Neurotrauma 28, 2219–2233 (2011).

    Article  Google Scholar 

  32. Xiao, T. et al. Assembly of lamina-specific neuronal connections by slit bound to type IV collagen. Cell 146, 164–176 (2011).

    Article  CAS  Google Scholar 

  33. Mitchel, J. A. & Hoffman-Kim, D. Cellular scale anisotropic topography guides Schwann cell motility. PLoS ONE 6, e24316 (2011).

    Article  CAS  Google Scholar 

  34. Frega, M., Tedesco, M., Massobrio, P., Pesce, M. & Martinoia, S. Network dynamics of 3D engineered neuronal cultures: a new experimental model for in-vitro electrophysiology. Sci. Rep. 4, 5489 (2014).

    Article  CAS  Google Scholar 

  35. George, N. & Geller, H. M. Extracellular matrix and traumatic brain injury. J. Neurosci. Res. 96, 573–588 (2018).

    Article  CAS  Google Scholar 

  36. Prochnow, N. Relevance of gap junctions and large pore channels in traumatic brain injury. Front. Physiol. 5, 31 (2014).

    Article  Google Scholar 

  37. Sun, L. et al. A novel cognitive impairment mechanism that astrocytic p-connexin 43 promotes neuronic autophagy via activation of P2X7R and down-regulation of GLT-1 expression in the hippocampus following traumatic brain injury in rats. Behav. Brain Res. 291, 315–324 (2015).

    Article  CAS  Google Scholar 

  38. Scemes, E., Suadicani, S. O., Dahl, G. & Spray, D. C. Connexin and pannexin mediated cell–cell communication. Neuron Glia Biol. 3, 199–208 (2007).

    Article  Google Scholar 

  39. Draberova, E. et al. Class III beta-tubulin is constitutively coexpressed with glial fibrillary acidic protein and nestin in midgestational human fetal astrocytes: implications for phenotypic identity. J. Neuropathol. Exp. Neurol. 67, 341–354 (2008).

    Article  CAS  Google Scholar 

  40. Hendrickson, M. L., Rao, A. J., Demerdash, O. N. & Kalil, R. E. Expression of nestin by neural cells in the adult rat and human brain. PLoS ONE 6, e18535 (2011).

    Article  CAS  Google Scholar 

  41. Schmid, R. S. & Anton, E. S. Role of integrins in the development of the cerebral cortex. Cereb. Cortex 13, 219–224 (2003).

    Article  Google Scholar 

  42. Parkin, J. D. et al. Mapping structural landmarks, ligand binding sites, and missense mutations to the collagen IV heterotrimers predicts major functional domains, novel interactions, and variation in phenotypes in inherited diseases affecting basement membranes. Hum. Mutat. 32, 127–143 (2011).

    Article  Google Scholar 

  43. Gary, D. S., Milhavet, O., Camandola, S. & Mattson, M. P. Essential role for integrin linked kinase in Akt-mediated integrin survival signaling in hippocampal neurons. J. Neurochem. 84, 878–890 (2003).

    Article  CAS  Google Scholar 

  44. Zhang, S., Zhao, E. & Winkelstein, B. A. A nociceptive role for integrin signaling in pain after mechanical injury to the spinal facet capsular ligament. Ann. Biomed. Eng. 45, 2813–2825 (2017).

    Article  Google Scholar 

  45. Sun, Z., Guo, S. S. & Fassler, R. Integrin-mediated mechanotransduction. J. Cell Biol. 215, 445–456 (2016).

    Article  CAS  Google Scholar 

  46. Ross, T. D. et al. Integrins in mechanotransduction. Curr. Opin. Cell Biol. 25, 613–618 (2013).

    Article  CAS  Google Scholar 

  47. Hemphill, M. A., Dauth, S., Yu, C. J., Dabiri, B. E. & Parker, K. K. Traumatic brain injury and the neuronal microenvironment: a potential role for neuropathological mechanotransduction. Neuron 85, 1177–1192 (2015).

    Article  CAS  Google Scholar 

  48. Bercu, M. M. et al. Enhanced survival and neurite network formation of human umbilical cord blood neuronal progenitors in three-dimensional collagen constructs. J. Mol. Neurosci. 51, 249–261 (2013).

    Article  CAS  Google Scholar 

  49. O’Shaughnessy, T. J., Lin, H. J. & Ma, W. Functional synapse formation among rat cortical neurons grown on three-dimensional collagen gels. Neurosci. Lett. 340, 169–172 (2003).

    Article  Google Scholar 

  50. O’Connor, S. M., Stenger, D. A., Shaffer, K. M. & Ma, W. Survival and neurite outgrowth of rat cortical neurons in three-dimensional agarose and collagen gel matrices. Neurosci. Lett. 304, 189–193 (2001).

    Article  Google Scholar 

  51. Lee, J. H. et al. Collagen gel three-dimensional matrices combined with adhesive proteins stimulate neuronal differentiation of mesenchymal stem cells. J. R. Soc. Interface 8, 998–1010 (2011).

    Article  CAS  Google Scholar 

  52. Cuntz, H., Forstner, F., Borst, A. & Hausser, M. One rule to grow them all: a general theory of neuronal branching and its practical application. PLoS Comput. Biol. 6, e1000877 (2010).

    Article  Google Scholar 

  53. Cuntz, H., Forstner, F., Borst, A. & Hausser, M. The TREES toolbox--probing the basis of axonal and dendritic branching. Neuroinformatics 9, 91–96 (2011).

    Article  Google Scholar 

  54. Bar-Kochba, E., Toyjanova, J., Andrews, E., Kim, K. S. & Franck, C. A fast iterative digital volume correlation algorithm for large deformations. Exp. Mech. 55, 261–274 (2015).

    Article  Google Scholar 

  55. Patel, M., Leggett, S. E., Landauer, A. K., Wong, I. Y. & Franck, C. Rapid, topology-based particle tracking for high-resolution measurements of large complex 3D motion fields. Sci. Rep. 8, 5581 (2018).

    Article  Google Scholar 

  56. Stout, D. A. et al. Mean deformation metrics for quantifying 3D cell-matrix interactions without requiring information about matrix material properties. Proc. Natl. Acad. Sci. USA 113, 2898–2903 (2016).

    Article  CAS  Google Scholar 

  57. Taubin, G. Curve and surface smoothing without shrinkage. Proc. IEEE Int. Conf. Comput. Vis. https://doi.org/10.1109/ICCV.1995.466848 (1995).

  58. Pop, V. et al. Early brain injury alters the blood-brain barrier phenotype in parallel with beta-amyloid and cognitive changes in adulthood. J. Cereb. Blood Flow Metab. 33, 205–214 (2013).

    Article  CAS  Google Scholar 

  59. Lozano, D. et al. Neuroinflammatory responses to traumatic brain injury: etiology, clinical consequences, and therapeutic opportunities. Neuropsychiatr. Dis. Treat. 11, 97–106 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Chodobski, A., Zink, B. J. & Szmydynger-Chodobska, J. Blood-brain barrier pathophysiology in traumatic brain injury. Transl. Stroke Res. 2, 492–516 (2011).

    Article  CAS  Google Scholar 

  61. Mattucci, S. F., Moulton, J. A., Chandrashekar, N. & Cronin, D. S. Strain rate dependent properties of younger human cervical spine ligaments. J. Mech. Behav. Biomed. Mater. 10, 216–226 (2012).

    Article  Google Scholar 

  62. Oh, Y. K., Kreinbrink, J. L., Wojtys, E. M. & Ashton-Miller, J. A. Effect of axial tibial torque direction on ACL relative strain and strain rate in an in vitro simulated pivot landing. J. Orthop. Res. 30, 528–534 (2012).

    Article  Google Scholar 

  63. Roan, E. & Waters, C. M. What do we know about mechanical strain in lung alveoli? Am. J. Physiol. Lung Cell. Mol. Physiol. 301, L625–L635 (2011).

    Article  CAS  Google Scholar 

  64. Sonka, M., Hlavac, V. & Boyle, R. Image Processing, Analysis, and Machine Vision 4th edn (Cengage Learning, Stamford, CT, 2015).

  65. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  Google Scholar 

  66. Rizk, A. et al. Segmentation and quantification of subcellular structures in fluorescence microscopy images using Squassh. Nat. Protoc. 9, 586–596 (2014).

    Article  CAS  Google Scholar 

  67. Donohue, D. E. & Ascoli, G. A. Automated reconstruction of neuronal morphology: an overview. Brain Res. Rev. 67, 94–102 (2011).

    Article  Google Scholar 

  68. Peng, H. et al. BigNeuron: large-scale 3D neuron reconstruction from optical microscopy images. Neuron 87, 252–256 (2015).

    Article  CAS  Google Scholar 

  69. Peng, H., Meijering, E. & Ascoli, G. A. From DIADEM to BigNeuron. Neuroinformatics 13, 259–260 (2015).

    Article  Google Scholar 

  70. Dolle, J. P. et al. Newfound sex differences in axonal structure underlie differential outcomes from in vitro traumatic axonal injury. Exp. Neurol. 300, 121–134 (2018).

    Article  Google Scholar 

  71. Wirth, P. et al. New method to induce mild traumatic brain injury in rodents produces differential outcomes in female and male Sprague Dawley rats. J. Neurosci. Methods 290, 133–144 (2017).

    Article  Google Scholar 

  72. Campbell, J. J., Husmann, A., Hume, R. D., Watson, C. J. & Cameron, R. E. Development of three-dimensional collagen scaffolds with controlled architecture for cell migration studies using breast cancer cell lines. Biomaterials 114, 34–43 (2017).

    Article  CAS  Google Scholar 

  73. Rupert, C. E. & Coulombe, K. L. K. IGF1 and NRG1 enhance proliferation, metabolic maturity, and the force-frequency response in hESC-derived engineered cardiac tissues. Stem Cells Int. 2017, 7648409 (2017).

    Article  Google Scholar 

  74. Garnotel, R. et al. Human blood monocytes interact with type I collagen through alpha x beta 2 integrin (CD11c-CD18, gp150-95). J. Immunol. 164, 5928–5934 (2000).

    Article  CAS  Google Scholar 

  75. Leitinger, B. & Hohenester, E. Mammalian collagen receptors. Matrix Biol. 26, 146–155 (2007).

    Article  CAS  Google Scholar 

  76. Owen, L. M. et al. A cytoskeletal clutch mediates cellular force transmission in a soft, three-dimensional extracellular matrix. Mol. Biol. Cell 28, 1959–1974 (2017).

    Article  CAS  Google Scholar 

  77. Linkert, M. et al. Metadata matters: access to image data in the real world. J. Cell Biol. 189, 777–782 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge M. Patel and A.K. Landauer for helpful discussions, and J. Toyjanova for assistance in early protocol development. The authors gratefully acknowledge financial support from the RI Science and Technology Council, a Haythornthwaite Research Initiation Grant, and the Office of Naval Research (T. Bentley). E.B.-K. acknowledges support from a National Science Foundation Graduate Research Fellowship. J.B.E. acknowledges support from a Graduate Assistance in Areas of National Need (GAANN) fellowship from the Brown University Institute for Molecular and Nanoscale Innovation.

Author information

Authors and Affiliations

Authors

Contributions

M.T.S., E.B.-K., and J.B.E. worked on the initial cell culture development. E.B.-K. developed the image processing with assistance from J.B.E. for post processing. E.B.-K. and C.F. developed the strain mapping technique. R.A. and M.T.S. worked on code refinement. E.B.-K., M.T.S., and J.B.E. acquired the test images. H.C.C. and M.T.S. performed immunostaining and imaged all immunostained samples. M.T.S., H.C.C., and C.F. wrote the paper. All authors reviewed the manuscript. C.F. supervised the project.

Corresponding author

Correspondence to Christian Franck.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related link

Key references using this protocol

Bar-Kochba, E., Scimone, M. T., Estrada, J.B. & Franck, C. Sci. Rep. 6, 30550 (2016): https://doi.org/10.1038/srep30550

Integrated supplementary information

Supplementary Figure 1 Mapping strains on tagged blebs.

Maximum intensity–projected confocal micrograph of a cell with artificially introduced spherical blebs (green arrows). Artificial blebs were introduced during image processing and do not represent signal from actual morphological processes. Blebs were tagged in NeuronStudio. Axial strain values were transformed onto the blebs using the same strain field as in Fig. 6a,b. Scale bar = 20 µm.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 and Supplementary Manual

Reporting Summary

Supplementary Data

Code and test volumes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scimone, M.T., Cramer III, H.C., Bar-Kochba, E. et al. Modular approach for resolving and mapping complex neural and other cellular structures and their associated deformation fields in three dimensions. Nat Protoc 13, 3042–3064 (2018). https://doi.org/10.1038/s41596-018-0077-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-018-0077-7

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics