Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A cross-linking/mass spectrometry workflow based on MS-cleavable cross-linkers and the MeroX software for studying protein structures and protein–protein interactions

Abstract

Chemical cross-linking in combination with mass spectrometric analysis of the created cross-linked products is an emerging technology aimed at deriving valuable structural information from proteins and protein complexes. The goal of our protocol is to obtain distance constraints for structure determination of proteins and to investigate protein–protein interactions. We present an integrated workflow for cross-linking/mass spectrometry (MS) based on protein cross-linking with MS-cleavable reagents, followed by enzymatic digestion, enrichment of cross-linked peptides by strong cation-exchange chromatography (SCX), and LC/MS/MS analysis. To exploit the full potential of MS-cleavable cross-linkers, we developed an updated version of the freely available MeroX software for automated data analysis. The commercially available, MS-cleavable cross-linkers (DSBU and CDI) used herein possess different lengths and react with amine as well as hydroxy groups. Owing to the formation of two characteristic 26-u doublets in their MS/MS spectra, many fewer false positives are found than when using classic, non-cleavable cross-linkers. The protocol, exemplified herein for BSA and the whole Escherichia coli ribosome, is robust and widely applicable, and it allows facile identification of cross-links for deriving spatial constraints from purified proteins and protein complexes. The cross-linking/MS procedure takes 2–3 days to complete.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Summary of the cross-linking/MS workflow for a typical experiment.
Fig. 2: Fragmentation of DSBU and CDI.
Fig. 3: Calculation of cross-link site probability P (%).
Fig. 4: Screenshot of the decoy analysis histogram.
Fig. 5: Screenshot of the main window.
Fig. 6: Screenshot of the detail window.

Similar content being viewed by others

Data availability

MS data and MeroX settings files are provided in the Supplementary Information.

References

  1. Young, M. M. et al. High throughput protein fold identification by using experimental constraints derived from intramolecular cross-links and mass spectrometry. Proc. Natl. Acad. Sci. USA 97, 5802–5806 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sinz, A. Chemical cross-linking and mass spectrometry to map three-dimensional protein structures and protein-protein interactions. Mass Spectrom. Rev. 25, 663–682 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Leitner, A. et al. Probing native protein structures by chemical cross-linking, mass spectrometry, and bioinformatics. Mol. Cell. Proteomics 9, 1634–1649 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Petrotchenko, E. V. & Borchers, C. H. Crosslinking combined with mass spectrometry for structural proteomics. Mass Spectrom. Rev. 29, 862–876 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Rappsilber, J. The beginning of a beautiful friendship: cross-linking/mass spectrometry and modelling of proteins and multi-protein complexes. J. Struct. Biol. 173, 530–540 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Leitner, A., Faini, M., Stengel, F. & Aebersold, R. Crosslinking and mass spectrometry: an integrated technology to understand the structure and function of molecular machines. Trends Biochem. Sci. 41, 20–32 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Greber, B. J. et al. The complete structure of the 55S mammalian mitochondrial ribosome. Science 348, 303–308 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Benda, C. et al. Structural model of a CRISPR RNA-silencing complex reveals the RNA-target cleavage activity in Cmr4. Mol. Cell 56, 43–54 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Schmidt, C. & Urlaub, H. Combining cryo-electron microscopy (cryo-EM) and cross-linking mass spectrometry (CX-MS) for structural elucidation of large protein assemblies. Curr. Opin. Struct. Biol. 46, 157 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Chavez, J. D., Schweppe, D. K., Eng, J. K. & Bruce, J. E. In vivo conformational dynamics of Hsp90 and its interactors. Cell Chem. Biol. 23, 716–726 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tang, X., Munske, G. R., Siems, W. F. & Bruce, J. E. Mass spectrometry identifiable cross-linking strategy for studying protein−protein interactions. Anal. Chem. 77, 311–318 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Chavez, J. D. et al. Chemical crosslinking mass spectrometry analysis of protein conformations and supercomplexes in heart tissue. Cell Syst. 6, 136-141.e5 (2017).

    Article  PubMed  CAS  Google Scholar 

  13. Zhang, H. et al. Identification of protein-protein interactions and topologies in living cells with chemical cross-linking and mass spectrometry. Mol. Cell. Proteomics 8, 409–420 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zheng, C. et al. Cross-linking measurements of in vivo protein complex topologies. Mol. Cell. Proteomics 10, M110.006841 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Yang, Y. et al. Genetically encoded releasable photo-cross-linking strategies for studying protein–protein interactions in living cells. Nat. Protoc. 12, 2147–2168 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Chavez, J. D., Weisbrod, C. R., Zheng, C., Eng, J. K. & Bruce, J. E. Protein interactions, post-translational modifications and topologies in human cells. Mol. Cell. Proteomics 12, 1451–1467 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Weisbrod, C. R. et al. In vivo protein interaction network identified with a novel real-time cross-linked peptide identification strategy. J. Proteome Res. 12, 1569–1579 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schweppe, D. K. et al. Host-microbe protein interactions during bacterial infection. Chem. Biol. 22, 1521–1530 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kleiner, R. E., Hang, L. E., Molloy, K. R., Chait, B. T. & Kapoor, T. M. A chemical proteomics approach to reveal direct protein-protein interactions in living cells. Cell Chem. Biol. 25, 110-120.e3 (2018).

    Article  PubMed  CAS  Google Scholar 

  20. Wu, X. et al. In vivo protein interaction network analysis reveals porin-localized antibiotic inactivation in Acinetobacter baumannii strain AB5075. Nat. Commun. 7, 13414 (2016).

  21. Yu, C. et al. Characterization of dynamic UbR-proteasome subcomplexes by in vivo cross-linking (X) assisted bimolecular tandem affinity purification (XBAP) and label-free quantitation. Mol. Cell. Proteomics 15, 2279–2292 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhu, X. et al. In planta chemical cross‐linking and mass spectrometry analysis of protein structure and interaction in Arabidopsis. Proteomics 16, 1915–1927 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. de Jong, L. et al. In culture cross-linking of bacterial cells reveals large scale dynamic protein-protein interactions at the peptide level. J. Proteome Res. 16, 2457-2471 (2017).

  24. Wang, X. et al. Molecular details underlying dynamic structures and regulation of the human 26S proteasome. Mol. Cell. Proteomics 16, 840–854 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Leitner, A., Walzthoeni, T. & Aebersold, R. Lysine-specific chemical cross-linking of protein complexes and identification of cross-linking sites using LC-MS/MS and the xQuest/xProphet software pipeline. Nat. Protoc. 9, 120–137 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Sinz, A. The advancement of chemical cross-linking and mass spectrometry for structural proteomics: from single proteins to protein interaction networks. Expert Rev. Proteomics 11, 733–743 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Rinner, O. et al. Identification of cross-linked peptides from large sequence databases. Nat. Methods 5, 315–318 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hoopmann, M. R. et al. Kojak: efficient analysis of chemically cross-linked protein complexes. J. Proteome Res. 14, 2190–2198 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Götze, M. et al. StavroX—a software for analyzing crosslinked products in protein interaction studies. J. Am. Soc. Mass Spectr. 23, 76–87 (2012).

    Article  CAS  Google Scholar 

  30. Yang, B. et al. Identification of cross-linked peptides from complex samples. Nat. Methods 9, 904–906 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Liu, F., Rijkers, D. T., Post, H. & Heck, A. J. Proteome-wide profiling of protein assemblies by cross-linking mass spectrometry. Nat. Methods 12, 1179–1184 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Götze, M. et al. Automated assignment ofMS/MS cleavable cross-links in protein 3D-structure analysis. J. Am. Soc. Mass Spectr. 26, 83–97 (2015).

    Article  CAS  Google Scholar 

  33. Boelt, S. G. et al. Mapping the Ca2+ induced structural change in calreticulin. J. Proteomics 142, 138–148 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Holding, A. N. XL-MS: protein cross-linking coupled with mass spectrometry. Methods 89, 54–63 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Schilling, B., Row, R. H., Gibson, B. W., Guo, X. & Young, M. M. MS2Assign, automated assignment and nomenclature of tandem mass spectra of chemically crosslinked peptides. J. Am. Soc. Mass Spectr. 14, 834–850 (2003).

    Article  CAS  Google Scholar 

  36. Teimer, R., Kosinski, J., von Appen, A., Beck, M. & Hurt, E. A short linear motif in scaffold Nup145C connects Y-complex with pre-assembled outer ring Nup82 complex. Nat Commun. 8, 1107 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Fernandez-Martinez, J. et al. Structure and function of the nuclear pore complex cytoplasmic mRNA export platform. Cell 167, 1215–1228.e25 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bui, K. H. et al. Integrated structural analysis of the human nuclear pore complex scaffold. Cell 155, 1233–1243 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Chen, J. et al. 6S RNA mimics B-form DNA to regulate Escherichia coli RNA polymerase. Mol. Cell 68, 388–397.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xu, Y. et al. Architecture of the RNA polymerase II-Paf1C-TFIIS transcription elongation complex. Nat. Commun. 8, 15741 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sheppard, C. et al. Repression of RNA polymerase by the archaeo-viral regulator ORF145/RIP. Nat. Commun. 7, 13595 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Müller, M. Q. et al. A universal matrix‐assisted laser desorption/ionization cleavable cross‐linker for protein structure analysis. Rapid Commun. Mass Spectrom. 25, 155–161 (2011).

    Article  PubMed  CAS  Google Scholar 

  43. Müller, M. Q., Dreiocker, F., Ihling, C. H., Schäfer, M. & Sinz, A. Cleavable cross-linker for protein structure analysis: reliable identification of cross-linking products by tandem MS. Anal. Chem. 82, 6958–6968 (2010).

    Article  PubMed  CAS  Google Scholar 

  44. Hage, C., Iacobucci, C., Rehkamp, A., Arlt, C. & Sinz, A. The first zero-length mass spectrometry-cleavable cross-linker for protein structure analysis. Angew. Chem. Int. Ed. Engl. 56, 14551–14555 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Arlt, C. et al. Integrated workflow for structural proteomics studies based on cross-linking/mass spectrometry with an MS/MS cleavable cross-linker. Anal. Chem. 88, 7930–7937 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Arlt, C. et al. An integrated mass spectrometry based approach to probe the structure of the full-length wild-type tetrameric p53 tumor suppressor. Angew. Chem. Int. Ed. Engl. 56, 275–279 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Gotze, M. et al. Translational repression of the Drosophila nanos mRNA involves the RNA helicase Belle and RNA coating by Me31B and Trailer hitch. RNA 23, 1552–1568 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Politis, A. et al. A mass spectrometry-based hybrid method for structural modeling of protein complexes. Nat. Methods 11, 403–406 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kalkhof, S. et al. Computational modeling of laminin N‐terminal domains using sparse distance constraints from disulfide bonds and chemical cross‐linking. Proteins 78, 3409–3427 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schweppe, D. K., Chavez, J. D. & Bruce, J. E. XLmap: an R package to visualize and score protein structure models based on sites of protein cross-linking. Bioinformatics 32, 306–308 (2015).

    PubMed  PubMed Central  Google Scholar 

  51. Brodie, N. I., Popov, K. I., Petrotchenko, E. V., Dokholyan, N. V. & Borchers, C. H. Solving protein structures using short-distance cross-linking constraints as a guide for discrete molecular dynamics simulations. Sci. Adv. 3, e1700479 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Barandun, J. et al. The complete structure of the small-subunit processome. Nat. Struct. Mol. Biol. 24, 944-953 (2017).

    Article  CAS  Google Scholar 

  53. Sinz, A. Divide and conquer: cleavable cross-linkers to study protein conformation and protein-protein interactions. Anal. Bioanal. Chem. 409, 33–44 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Back, J. et al. A new crosslinker for mass spectrometric analysis of the quaternary structure of protein complexes. J. Am. Soc. Mass Spectr. 12, 222–227 (2001).

    Article  CAS  Google Scholar 

  55. Liu, F., Lossl, P., Scheltema, R., Viner, R. & Heck, A. J. R. Optimized fragmentation schemes and data analysis strategies for proteome-wide cross-link identification. Nat. Commun. 8, 15473 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhong, X. et al. Large-scale and targeted quantitative cross-linking MS using isotope-labeled protein interaction reporter (PIR) cross-linkers. J. Proteome Res. 16, 720–727 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Kao, A. H. et al. Development of a novel cross-linking strategy for fast and accurate identification of cross-linked peptides of protein complexes. Mol. Cell. Proteomics 10, M110.002212 (2011).

    Article  PubMed  CAS  Google Scholar 

  58. Iacobucci, C. et al. Carboxyl-photo-reactive MS-cleavable cross-linkers: unveiling a hidden aspect of diazirine-based reagents. Anal. Chem. 90, 2805–2809 (2018).

    Article  CAS  PubMed  Google Scholar 

  59. Bomgarden, R. et al. Optimization of crosslinked peptide analysis on an Orbitrap Fusion Lumos mass spectrometer. Poster note. http://tools.thermofisher.com/content/sfs/posters/PN-64854-LC-MS-Crosslinked-Peptide-IMSC2016-PN64854-EN.pdf (2017).

  60. Bruce, J. E. In vivo protein complex topologies: sights through a cross‐linking lens. Proteomics 12, 1565–1575 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chavez, J. D. et al. Quantitative interactome analysis reveals a chemoresistant edgotype. Nat. Commun. 6, 7928 (2015).

  62. Petrotchenko, E. V., Serpa, J. J. & Borchers, C. H. An isotopically coded CID-cleavable biotinylated cross-linker for structural proteomics. Mol. Cell. Proteomics 10, M110.001420 (2011).

    Article  PubMed  CAS  Google Scholar 

  63. Kaake, R. M. et al. A new in vivo cross-linking mass spectrometry platform to define protein–protein interactions in living cells. Mol. Cell. Proteomics 13, 3533–3543 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Joerger, A. C. & Fersht, A. R. The p53 pathway: origins, inactivation in cancer, and emerging therapeutic approaches. Annu. Rev. Biochem. 85, 375-404 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Tidow, H. et al. Quaternary structures of tumor suppressor p53 and a specific p53 DNA complex. Proc. Natl. Acad. Sci. USA 104, 12324–12329 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Okorokov, A. L. et al. The structure of p53 tumour suppressor protein reveals the basis for its functional plasticity. EMBO J. 25, 5191–5200 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bräuning, B. et al. Structure and mechanism of the two-component α-helical pore-forming toxin YaxAB. Nat. Commun. 9, 1806 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Yu, C. & Huang, L. Cross-linking mass spectrometry: an emerging technology for interactomics and structural biology. Anal. Chem. 90, 144–165 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Soderblom, E. J. & Goshe, M. B. Collision-induced dissociative chemical cross-linking reagents and methodology: applications to protein structural characterization using tandem mass spectrometry analysis. Anal. Chem. 78, 8059–8068 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Soderblom, E. J., Bobay, B. G., Cavanagh, J. & Goshe, M. B. Tandem mass spectrometry acquisition approaches to enhance identification of protein‐protein interactions using low‐energy collision‐induced dissociative chemical crosslinking reagents. Rapid Commun. Mass Spectrom. 21, 3395–3408 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Mak, M., Mezö, G., Skribanek, Z. & Hudecz, F. Stability of Asp-Pro bond under high and low energy collision induced dissociation conditions in the immunodominant epitope region of herpes simplex virion glycoprotein D. Rapid Commun. Mass Spectrom. 12, 837–842 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Dreiocker, F., Müller, M. Q., Sinz, A. & Schäfer, M. Collision‐induced dissociative chemical cross‐linking reagent for protein structure characterization: applied Edman chemistry in the gas phase. J. Mass Spectrom. 45, 178–189 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Müller, M. Q., Dreiocker, F., Ihling, C. H., Schäfer, M. & Sinz, A. Fragmentation behavior of a thiourea‐based reagent for protein structure analysis by collision‐induced dissociative chemical cross‐linking. J. Mass Spectrom. 45, 880–891 (2010).

    Article  PubMed  CAS  Google Scholar 

  74. Lu, Y., Tanasova, M., Borhan, B. & Reid, G. E. Ionic reagent for controlling the gas-phase fragmentation reactions of cross-linked peptides. Anal. Chem. 80, 9279–9287 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Kao, A. et al. Mapping the structural topology of the yeast 19S proteasomal regulatory particle using chemical cross-linking and probabilistic modeling. Mol. Cell. Proteomics 11, 1566–1577 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Merkley, E. D. et al. Distance restraints from crosslinking mass spectrometry: mining a molecular dynamics simulation database to evaluate lysine–lysine distances. Protein Sci. 23, 747–759 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Leitner, A. et al. Expanding the chemical cross-linking toolbox by the use of multiple proteases and enrichment by size exclusion chromatography. Mol. Cell. Proteomics 11, M111.014126 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Rappsilber, J., Ishihama, Y. & Mann, M. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal. Chem. 75, 663–670 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Fritzsche, R., Ihling, C. H., Götze, M. & Sinz, A. Optimizing the enrichment of cross‐linked products for mass spectrometric protein analysis. Rapid Commun. Mass Spectrom. 26, 653–658 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Schmidt, R. & Sinz, A. Improved single-step enrichment methods of cross-linked products for protein structure analysis and protein interaction mapping. Anal. Bioanal. Chem. 409, 2393–2400 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. Iacobucci, C. & Sinz, A. To be or not to be? Five guidelines to avoid misassignments in cross-linking/mass spectrometry. Anal. Chem. 89, 7832–7835 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Sinz, A. Cross‐linking/mass spectrometry for studying protein structures and protein–protein interactions: where are we now and where should we go from here? Angew. Chem. Int. Ed. Engl. 57, 6390–6396 (2018).

    Article  CAS  PubMed  Google Scholar 

  83. Brower, E. T. et al. The molecular architecture of p85α as determined by SAXS and chemical cross-linking. Cancer Res. 73, 2225 (2013).

    Google Scholar 

  84. Bomgarden, R. et al. Optimization of crosslinked peptide analysis on an Orbitrap Fusion Lumos mass spectrometer. Poster note. http://tools.thermofisher.com/content/sfs/posters/PN-64854-LC-MS-Crosslinked-Peptide-IMSC2016-PN64854-EN.pdf (2017).

  85. Iacobucci, C., Hage, C., Schäfer, M. & Sinz, A. A novel MS-cleavable azo cross-linker for peptide structure analysis by free radical initiated peptide sequencing (FRIPS). J. Am. Soc. Mass Spectrom. 28, 2039–2053 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Iacobucci, C., Piotrowski, C., Rehkamp, A., Ihling, C. H. & Sinz, A. The first MS-cleavable, photo-thiol-reactive cross-linker for protein structural studies. J. Am. Soc. Mass Spectrom. https://doi.org/10.1007/s13361-018-1952-8 (2018).

  87. Iacobucci, C., Schäfer, M. & Sinz, A. Free radical–initiated peptide sequencing (FRIPS)‐based cross‐linkers for improved peptide and protein structure analysis. Mass Spectrom. Rev. https://doi.org/10.1002/mas.21568 (2018).

  88. Grifnée, E. et al. Structural characterization of protein using an enzymatic reactor. Poster. http://hdl.handle.net/2268/174922 (2014).

  89. Olsen, J. V. et al. Higher-energy C-trap dissociation for peptide modification analysis. Nat. Methods 4, 709–712 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.S. acknowledges financial support by the DFG (project Si 867/15-2). C.I. was funded by the Alexander von Humboldt Foundation. M.G. was funded by the DFG (FOR855, ‘Cytoplasmic regulation of gene expression’, and GRK1591, ‘Posttranscriptional control of gene expression—mechanisms and role in pathogenesis’). We thank X. Wang and D. Tänzler for excellent technical support.

Author information

Authors and Affiliations

Authors

Contributions

C.I., M.G., and A.S. wrote the paper. C.H.I., C.P., C.A., M.S., C.H., and R.S. contributed to the Materials and Procedure sections.

Corresponding author

Correspondence to Andrea Sinz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Iacobucci, C. & Sinz, A. Anal. Chem. 89, 7832–7835 (2017): https://doi.org/10.1021/acs.analchem.7b02316

Iacobucci, C. et al. Anal. Chem. 90, 2805–2809 (2018): https://pubs.acs.org/doi/abs/10.1021/acs.analchem.7b04915

Müller, M. Q., Dreiocker, F., Ihling, C. H., Schäfer, M. & Sinz, A. Anal. Chem. 82, 6958–6968 (2010): https://pubs.acs.org/doi/abs/10.1021/ac101241t

Hage, C., Iacobucci, C., Rehkamp, A., Arlt, C. & Sinz, A. Angew. Chem. Ed. Engl. 56, 14551–14555 (2017): https://doi.org/10.1002/anie.201708273

Supplementary information

Supplementary Information

Supplementary Figures 1–6 and Supplementary Tables 1–3

Reporting Summary

Supplementary Dataset 1

Cross-linking data for BSA

Supplementary Dataset 2

Cross-linking data for E. coli ribosome

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iacobucci, C., Götze, M., Ihling, C.H. et al. A cross-linking/mass spectrometry workflow based on MS-cleavable cross-linkers and the MeroX software for studying protein structures and protein–protein interactions. Nat Protoc 13, 2864–2889 (2018). https://doi.org/10.1038/s41596-018-0068-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-018-0068-8

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing