Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

CRISPR–Cas9-mediated genome editing in apple and grapevine


The CRISPR–Cas9 genome-editing tool and the availability of whole-genome sequences from plant species have revolutionized our ability to introduce targeted mutations into important crop plants, both to explore genetic changes and to introduce new functionalities. Here, we describe protocols adapting the CRISPR–Cas9 system to apple and grapevine plants, using both plasmid-mediated genome editing and the direct delivery of CRISPR–Cas9 ribonucleoproteins (RNPs) to achieve efficient DNA-free targeted mutations in apple and grapevine protoplasts. We provide a stepwise protocol for the design and transfer of CRISPR–Cas9 components to apple and grapevine protoplasts, followed by verification of highly efficient targeted mutagenesis, and regeneration of plants following the plasmid-mediated delivery of components. Our plasmid-mediated procedure and the direct delivery of CRISPR–Cas9 RNPs can both be utilized to modulate traits of interest with high accuracy and efficiency in apple and grapevine, and could be extended to other crop species. The complete protocol employing the direct delivery of CRISPR–Cas9 RNPs takes as little as 2–3 weeks, whereas the plasmid-mediated procedure takes >3 months to regenerate plants and study the mutations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Schematic diagram of plasmid-mediated CRISPR–Cas9-based gene editing, and gene editing by direct delivery of CRISPR–Cas9 RNPs to plant cells to produce genetically edited crop plants.
Fig. 2: Anticipated results of plasmid-mediated CRISPR–Cas9-based gene editing in apple.
Fig. 3: Anticipated results of plasmid-mediated CRISPR–Cas9-based gene editing in grape.
Fig. 4: Anticipated results for CRISPR–Cas9-based editing in apple and grapevine by RNP delivery.


  1. 1.

    Osakabe, Y., Osakabe, K., Shinozaki, K. & Tran, L. S. P. Response of plants to water stress. Front. Plant Sci. 5, 86 (2014).

    Article  Google Scholar 

  2. 2.

    Kanchiswamy, C. N. et al. Looking forward to genetically edited fruit crops. Trends Biotechnol. 33, 62–64 (2015).

    Article  Google Scholar 

  3. 3.

    Osakabe, Y. et al. Optimization of CRISPR–Cas9 genome editing to modify abiotic stress responses in plants. Sci. Rep. 6, 26685 (2016).

    CAS  Article  Google Scholar 

  4. 4.

    Song, G. et al. CRISPR/Cas9: a powerful tool for crop genome editing. Crop J. 4, 75–82 (2016).

    Article  Google Scholar 

  5. 5.

    Zhang, Y. et al. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat. Commun. 7, 12617 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    Woo, J. W. et al. DNA-free genome editing in plants with preassembled CRISPR–Cas9 ribonucleoproteins. Nat. Biotechnol. 33, 1162–1164 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    Jia, H. & Wang, N. Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS ONE 9, e93806 (2014).

    Article  Google Scholar 

  8. 8.

    Fan, D. et al. Efficient CRISPR–Cas9-mediated targeted mutagenesis in Populus in the first generation. Sci. Rep. 5, 12217 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    Nishitani, C. et al. Efficient genome editing in apple using a CRISPR–Cas9 system. Sci. Rep. 6, 31481 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    Ren, C. et al. CRISPR–Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Sci. Rep. 6, 32289 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Malnoy, M. et al. DNA-free genetically edited grapevine and apple protoplast using CRISPR–Cas9 ribonucleoproteins. Front. Plant Sci. 7, 1904 (2016).

    Article  Google Scholar 

  12. 12.

    GóMez-Lim, M. A. & Litz, R. E. Genetic transformation of perennial tropical fruits. In Vitro Cell. Dev. Biol. Plant 40, 442–449 (2004).

    Article  Google Scholar 

  13. 13.

    Gambino, G. & Gribaudo, I. Genetic transformation of fruit trees: current status and remaining challenges. Transgenic Res. 21, 1163–1181 (2012).

    CAS  Article  Google Scholar 

  14. 14.

    Kim, H. CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat. Commun. 8, 14406 (2017).

    CAS  Article  Google Scholar 

  15. 15.

    Liang, Z. et al. Efficient DNA-free genome editing of bread wheat using CRISPR–Cas9 ribonucleoprotein complexes. Nat. Commun. 8, 14261 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    Svitashev, S., Schwartz, C., Lenderts, B., Young, J. K. & Cigan, A. M. Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nat. Commun. 7, 13274 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    Velasco, R. et al. The genome of the domesticated apple (Malus x domestica Borkh.). Nat. Genet. 42, 833–839 (2010).

    CAS  Article  Google Scholar 

  18. 18.

    Jaillon, O. et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463–467 (2007).

    CAS  Article  Google Scholar 

  19. 19.

    Patat-Ochatt, E. M., Boccon-Gibod, J., Duron, M. & Ochatt, S. J. Organogenesis of stem and leaf protoplasts of a haploid golden delicious apple clone (Malus X domestica Borkh.). Plant Cell Rep. 12, 118–120 (1993).

    CAS  Article  Google Scholar 

  20. 20.

    Doughty, S. & Power, J. B. Callus formation from leaf mesophyll protoplasts of Malus X domestica Borkh. cv. Greensleeves. Plant Cell Rep. 7, 200–201 (1988).

    CAS  Article  Google Scholar 

  21. 21.

    Lin, Y. C. et al. A simple improved-throughput xylem protoplast system for studying wood formation. Nat. Protoc. 9, 2194–2205 (2014).

    CAS  Article  Google Scholar 

  22. 22.

    Patat-Ochatt, E. M. et al. Organogenesis of stem and leaf protoplasts of a haploid golden delicious apple clone (Malus X domestica Borkh.). Plant Cell Rep. 12, 118–120 (1993).

    CAS  Article  Google Scholar 

  23. 23.

    Saito, A. & Suzuki, M. Plant regeneration from meristem-derived callus protoplasts of apple (Malus3domestica cv. ‘Fuji’). Plant Cell Rep. 18, 549–553 (1999).

    CAS  Article  Google Scholar 

  24. 24.

    Zhu, Y.-M., Hoshino, Y., Nakano, M., Takahashi, E. & Mii, M. Highly efficient system of plant regeneration from protoplasts of grapevine (Vitis vinifera L.) through somatic embryogenesis by using embryogenic callus culture and activated charcoal. Plant Sci. 123, 151–157 (1997).

    CAS  Article  Google Scholar 

  25. 25.

    Tomiczak, K., Mikuła, A., Sliwinska, E. & Rybczyński, J. J. Autotetraploid plant regeneration by indirect somatic embryogenesis from leaf mesophyll protoplasts of diploid Gentiana decumbens L.f. In Vitro Cell. Dev. Biol. 51, 350–359 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    Gelvin, B. Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol. Mol. Biol. Rev. 67, 16–37 (2003).

    CAS  Article  Google Scholar 

  27. 27.

    Wada, M. et al. Anatomical analysis by two approaches ensure the promoter activities of apple AFL genes. J. Jpn. Soc. Hortic. Sci. 78, 32–39 (2009).

    CAS  Article  Google Scholar 

  28. 28.

    Stamp, J. A. & Meredith, C. P. Somatic embryogenesis from leaves and anthers of grapevine. Sci. Hortic. 35, 235–250 (1988).

    Article  Google Scholar 

  29. 29.

    Nakano, M., Watanabe, Y. & Hoshino, Y. Histological examination of callogenesis and adventitious embryogenesis in immature ovary culture of grapevine (Vitis vinifera L.). J. Hortic. Sci. Biotechnol. 75, 154–160 (2000).

    Article  Google Scholar 

  30. 30.

    Dai, L. et al. Establishment of a picloram-induced somatic embryogenesis system in Vitis vinifera cv. chardonnay and genetic transformation of a stilbene synthase gene from wild-growing Vitis species. Plant Cell Tissue Organ Cult. 121, 397–412 (2015).

    CAS  Article  Google Scholar 

  31. 31.

    Kanchiswamy, C. N., Malnoy, M., Velasco, R., Kim, J. S. & Viola, R. Non-GMO genetically edited crop plants. Trends Biotechnol. 9, 489–491 (2015).

    Article  Google Scholar 

  32. 32.

    Jelly, N. S., Valat, L., Walter, B. & Maillot, P. Transient expression assays in grapevine: a step towards genetic improvement. Plant Biotechnol. J. 12, 1231–1245 (2014).

    Article  Google Scholar 

  33. 33.

    Kim, S., Kim, D., Cho, S. W., Kim, J. & Kim, J. S. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 24, 1012–1019 (2014).

    CAS  Article  Google Scholar 

  34. 34.

    Xiao, A. et al. CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics 30, 1180–1182 (2014).

    CAS  Article  Google Scholar 

  35. 35.

    Doench, J. G. et al. Rational design of highly active sgRNAs for CRISPR–Cas9-mediated gene inactivation. Nat. Biotechnol. 32, 1262–1267 (2014).

    CAS  Article  Google Scholar 

  36. 36.

    Ueta, R. et al. Rapid breeding of parthenocarpic tomato plants using CRISPR–Cas9. Sci. Rep. 7, 507 (2017).

    Article  Google Scholar 

  37. 37.

    Sawada, H., Ieki, H. & Matsuda, I. PCR detection of Ti and Ri plasmids from phytopathogenic Agrobacterium strains. Appl. Environ. Microbiol. 61, 828–831 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Höfgen, R. & Willmitzer, L. Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res. 16, 9877 (1988).

    Article  Google Scholar 

  39. 39.

    Edwards, K., Johnstone, C. & Thompson, C. A simple and rapid method for the preparation of plant genomic DNA for PCRanalysis. Nucleic Acid Res. 19, 1349 (1991).

    CAS  Article  Google Scholar 

  40. 40.

    Bae, S., Park, J. & Kim, J. S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473–1475 (2014).

    CAS  Article  Google Scholar 

  41. 41.

    Liu, J. et al. Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells. Nat. Protoc. 10, 1842–1859 (2015).

    CAS  Article  Google Scholar 

  42. 42.

    Cho, S. W., Kim, S., Kim, J. M. & Kim, J. S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 230–232 (2013).

    CAS  Article  Google Scholar 

  43. 43.

    Lei, R. et al. A simple and effective method to encapsulate tobacco mesophyll protoplasts to maintain cell viability. MethodsX 2, 24–32 (2015).

    Article  Google Scholar 

  44. 44.

    Subburaj, S. et al. Site-directed mutagenesis in Petunia x hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins. Plant Cell Rep. 35, 1535–1544 (2016).

    CAS  Article  Google Scholar 

Download references


This work was supported by the Council for Science, Technology and Innovation (CSTI), the Cross-ministerial Strategic Innovation Promotion Program (SIP), and the ‘Technologies for creating next-generation agriculture, forestry and fisheries’ program (funding agency: Bio-oriented Technology Research Advancement Institution, NARO) in Japan. This work was also supported by the Program on Open Innovation Platform with Enterprises, Research Institute and Academia (OPERA) in Japan and the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, and Forestry (IPET) through the Agri-Bio Industry Technology Development Program, funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA, grant number: 116088-3).

Author information




Y.O., Z.L., C.R., C.N., K.O., M.W., S.K., M.M., R.V., M.P., M.-H.J., O.-J.K., R.V., and C.N.K. designed and performed the experiments. Y.O., Z.L., O.-J.K., and C.N.K. wrote the manuscript, with help from all authors.

Corresponding authors

Correspondence to Yuriko Osakabe or Chidananda Nagamangala Kanchiswamy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related link

Key references using this protocol

Malnoy, M. et al. Front. Plant Sci. 7, 1904 (2016):

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Osakabe, Y., Liang, Z., Ren, C. et al. CRISPR–Cas9-mediated genome editing in apple and grapevine. Nat Protoc 13, 2844–2863 (2018).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing