Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mitigating head motion artifact in functional connectivity MRI


Participant motion during functional magnetic resonance image (fMRI) acquisition produces spurious signal fluctuations that can confound measures of functional connectivity. Without mitigation, motion artifact can bias statistical inferences about relationships between connectivity and individual differences. To counteract motion artifact, this protocol describes the implementation of a validated, high-performance denoising strategy that combines a set of model features, including physiological signals, motion estimates, and mathematical expansions, to target both widespread and focal effects of subject movement. This protocol can be used to reduce motion-related variance to near zero in studies of functional connectivity, providing up to a 100-fold improvement over minimal-processing approaches in large datasets. Image denoising requires 40 min to 4 h of computing per image, depending on model specifications and data dimensionality. The protocol additionally includes instructions for assessing the performance of a denoising strategy. Associated software implements all denoising and diagnostic procedures, using a combination of established image-processing libraries and the eXtensible Connectivity Pipeline (XCP) software.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Workflow for motion correction of functional connectivity MRI data.
Fig. 2: Summary of subject-level performance diagnostics and anticipated results (Steps 28–33).
Fig. 3: Summary of group-level performance diagnostics and anticipated results (Steps 34–36).

Data availability

Sample data and results for testing the denoising and benchmarking protocol are available publicly at FigShare under the MIT license (


  1. 1.

    Biswal, B., Yetkin, F. Z., Haughton, V. M. & Hyde, J. S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–541 (1995).

    CAS  Google Scholar 

  2. 2.

    Biswal, B. B. et al. Toward discovery science of human brain function. Proc. Natl. Acad. Sci. USA 107, 4734–4739 (2010).

    CAS  Google Scholar 

  3. 3.

    Power, J. D. et al. Functional network organization of the human brain. Neuron 72, 665–678 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  4. 4.

    Yeo, B. T. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    Google Scholar 

  5. 5.

    Raichle, M. E. et al. A default mode of brain function. Proc. Natl. Acad. Sci. USA 98, 676–682 (2001).

    CAS  Google Scholar 

  6. 6.

    Sharma, A. et al. Common dimensional reward deficits across mood and psychotic disorders: a connectome-wide association study. Am. J. Psychiatry 174, 657–666 (2017).

    PubMed Central  PubMed  Google Scholar 

  7. 7.

    Gu, S. et al. Emergence of system roles in normative neurodevelopment. Proc. Natl. Acad. Sci. USA 112, 13681–13686 (2015).

    CAS  Google Scholar 

  8. 8.

    Dosenbach, N. U. F. et al. Prediction of individual brain maturity using fMRI. Science 329, 1358–1361 (2011).

    Google Scholar 

  9. 9.

    Fair, D. A. et al. The maturing architecture of the brain's default network. Proc. Natl. Acad. Sci. USA 105, 4028–4032 (2008).

    CAS  Google Scholar 

  10. 10.

    Satterthwaite, T. D. et al. Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth. Neuroimage 60, 623–632 (2012).

    PubMed Central  PubMed  Google Scholar 

  11. 11.

    Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59, 2142–2154 (2012).

    Google Scholar 

  12. 12.

    Van Dijk, K. R. A., Sabuncu, M. R. & Buckner, R. L. The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 59, 431–438 (2012).

    Google Scholar 

  13. 13.

    Power, J. D., Plitt, M., Laumann, T. O. & Martin, A. Sources and implications of whole-brain fMRI signals in humans. Neuroimage 146, 609–625 (2016).

    PubMed Central  PubMed  Google Scholar 

  14. 14.

    Fair, D. A. et al. Development of distinct control networks through segregation and integration. Proc. Natl. Acad. Sci. USA 104, 13507–13512 (2007).

    CAS  Google Scholar 

  15. 15.

    Friston, K., Williams, S., Howard, R., Frackowiak, R. S. J. & Turner, R. Movement-related effects in {fMRI} time-series. Magn. Reson. Med. 35, 346–355 (1996).

    CAS  Google Scholar 

  16. 16.

    Behzadi, Y., Restom, K., Liau, J. & Liu, T. T. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage 37, 90–101 (2007).

    PubMed Central  PubMed  Google Scholar 

  17. 17.

    Satterthwaite, T. D. et al. An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage 64, 240–256 (2013).

    Google Scholar 

  18. 18.

    Power, J. D. et al. Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84, 320–341 (2014).

    Google Scholar 

  19. 19.

    Muschelli, J. et al. Reduction of motion-related artifacts in resting state fMRI using aCompCor. Neuroimage 96, 22–35 (2014).

    PubMed Central  PubMed  Google Scholar 

  20. 20.

    Pruim, R. H. R. et al. ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI data. Neuroimage 112, 267–277 (2015).

    Google Scholar 

  21. 21.

    Salimi-Khorshidi, G. et al. Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. Neuroimage 90, 449–468 (2014).

    PubMed Central  PubMed  Google Scholar 

  22. 22.

    Ciric, R. et al. Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity. Neuroimage 154, 174–187 (2017).

    PubMed Central  PubMed  Google Scholar 

  23. 23.

    Parkes, L., Fulcher, B. D., Yucel, M. & Fornito, A. An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI. Neuroimage 171, 414–436 (2018).

    Google Scholar 

  24. 24.

    Burgess, G. C. et al. Evaluation of denoising strategies to address motion-correlated magnetic resonance imaging data from the Human Connectome Project. Brain Connect. 6, 414–436 (2016).

    Google Scholar 

  25. 25.

    Yan, C. G. et al. A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. Neuroimage 76, 183–201 (2013).

    PubMed Central  PubMed  Google Scholar 

  26. 26.

    Macey, P. M., Macey, K. E., Kumar, R. & Harper, R. M. A method for removal of global effects from fMRI time series. Neuroimage 22, 360–366 (2004).

    Google Scholar 

  27. 27.

    Fox, M. D., Zhang, D., Snyder, A. Z. & Raichle, M. E. The global signal and observed anticorrelated resting state brain networks. J. Neurophysiol. 101, 3270–3283 (2009).

    PubMed Central  PubMed  Google Scholar 

  28. 28.

    Power, J. D., Schlaggar, B. L. & Petersen, S. E. Recent progress and outstanding issues in motion correction in resting state fMRI. Neuroimage 105, 536–551 (2015).

    Google Scholar 

  29. 29.

    Greene, D. J. et al. Behavioral interventions for reducing head motion during MRI scans in children. Neuroimage 171, 234–245 (2018).

    Google Scholar 

  30. 30.

    Faraji-Dana, Z., Tam, F., Chen, J. J. & Graham, S. J. A robust method for suppressing motion-induced coil sensitivity variations during prospective correction of head motion in fMRI. Magn. Reson. Imaging 34, 1206–1219 (2016).

    Google Scholar 

  31. 31.

    Bright, M. G. & Murphy, K. Removing motion and physiological artifacts from intrinsic BOLD fluctuations using short echo data. Neuroimage 64, 526–537 (2013).

    PubMed Central  PubMed  Google Scholar 

  32. 32.

    Kundu, P. et al. Integrated strategy for improving functional connectivity mapping using multiecho fMRI. Proc. Natl. Acad. Sci. USA 110, 16187–16192 (2013).

    CAS  Google Scholar 

  33. 33.

    Dosenbach, N. U. F. et al. Real-time motion analytics during brain MRI improve data quality and reduce costs. Neuroimage 161, 80–93 (2017).

    PubMed Central  PubMed  Google Scholar 

  34. 34.

    Power, J. D. et al. Ridding fMRI data of motion-related influences: removal of signals with distinct spatial and physical bases in multiecho data. Proc. Natl. Acad. Sci. USA 115, E2105–E2114 (2018).

    CAS  Google Scholar 

  35. 35.

    Satterthwaite, T. D. et al. Heterogeneous impact of motion on fundamental patterns of developmental changes in functional connectivity during youth. Neuroimage 83, 45–57 (2013).

    Google Scholar 

  36. 36.

    Zeng, L.-L. et al. Neurobiological basis of head motion in brain imaging. Proc. Natl. Acad. Sci. USA 111, 6058–6062 (2014).

    CAS  Google Scholar 

  37. 37.

    Van Essen, D. C. et al. The WU-Minn Human Connectome Project: an overview. Neuroimage 80, 62–79 (2013).

    PubMed Central  PubMed  Google Scholar 

  38. 38.

    Satterthwaite, T. D. et al. Linked sex differences in cognition and functional connectivity in youth. Cereb. Cortex 25, 2383–2394 (2015).

    Google Scholar 

  39. 39.

    Xia, C. H. et al. Linked dimensions of psychopathology and connectivity in functional brain networks. Nat. Commun. 9, 3003 (2018).

    PubMed Central  PubMed  Google Scholar 

  40. 40.

    Murphy, K. & Fox, M. D. Towards a consensus regarding global signal regression for resting state functional connectivity MRI. Neuroimage 154, 169–173 (2017).

    PubMed Central  PubMed  Google Scholar 

  41. 41.

    Murphy, K., Birn, R. M., Handwerker, D. A., Jones, T. B. & Bandettini, P. A. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage 44, 893–905 (2009).

    Google Scholar 

  42. 42.

    Chai, X. J., Castañán, A. N., Öngür, D. & Whitfield-Gabrieli, S. Anticorrelations in resting state networks without global signal regression. Neuroimage 59, 1420–1428 (2012).

    Google Scholar 

  43. 43.

    Saad, Z. S. et al. Trouble at rest: how correlation patterns and group differences become distorted after global signal regression. Brain Connect. 2, 25–32 (2012).

    PubMed Central  PubMed  Google Scholar 

  44. 44.

    Yan, C.-G., Craddock, R. C., He, Y. & Milham, M. P. Addressing head motion dependencies for small-world topologies in functional connectomics. Front. Hum. Neurosci. 7, 910 (2013).

    PubMed Central  PubMed  Google Scholar 

  45. 45.

    Power, J. D., Laumann, T. O., Plitt, M., Martin, A. & Petersen, S. E. On global fMRI signals and simulations. Trends Cogn. Sci. 21, 911–913 (2017).

    Google Scholar 

  46. 46.

    Yang, G. J. et al. Altered global brain signal in schizophrenia. Proc. Natl. Acad. Sci. USA 111, 7438–7443 (2014).

    CAS  Google Scholar 

  47. 47.

    Hahamy, A. et al. Save the global: global signal connectivity as a tool for studying clinical populations with functional magnetic resonance imaging. Brain Connect. 4, 395–403 (2014).

    PubMed Central  PubMed  Google Scholar 

  48. 48.

    Carone, D. et al. Impact of automated ICA-based denoising of fMRI data in acute stroke patients. NeuroImage Clin. 16, 23–31 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  49. 49.

    Tremblay, M., Tam, F. & Graham, S. J. Retrospective coregistration of functional magnetic resonance imaging data using external monitoring. Magn. Reson. Med. 53, 141–149 (2005).

    Google Scholar 

  50. 50.

    Cox, R. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 29, 162–173 (1996).

    CAS  Google Scholar 

  51. 51.

    Avants, B. B. et al. A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54, 2033–2044 (2011).

    Google Scholar 

  52. 52.

    Smith, S. M. et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23, 208–219 (2004).

    Google Scholar 

  53. 53.

    Lemieux, L., Salek-Haddadi, A., Lund, T. E., Laufs, H. & Carmichael, D. Modelling large motion events in fMRI studies of patients with epilepsy. Magn. Reson. Imaging 25, 894–901 (2007).

    Google Scholar 

  54. 54.

    Klein, A. et al. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage 46, 786–802 (2009).

    PubMed Central  PubMed  Google Scholar 

  55. 55.

    Tustison, N. J. et al. Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements. Neuroimage 99, 166–179 (2014).

    Google Scholar 

  56. 56.

    Satterthwaite, T. D. et al. Motion artifact in studies of functional connectivity: characteristics and mitigation strategies. Hum. Brain Mapp. (2017).

  57. 57.

    Power, J. D. A simple but useful way to assess fMRI scan qualities. Neuroimage 154, 150–158 (2017).

    Google Scholar 

  58. 58.

    Zuo, X.-N. et al. An open science resource for establishing reliability and reproducibility in functional connectomics. Sci. Data 1, 140049 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  59. 59.

    Carp, J. Optimizing the order of operations for movement scrubbing: comment on Power et al. Neuroimage 76, 436–438 (2013).

    Google Scholar 

  60. 60.

    Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Steps toward optimizing motion artifact removal in functional connectivity MRI; a reply to Carp. Neuroimage 76, 439–441 (2013).

    Google Scholar 

  61. 61.

    Sikka, S. et al. Towards automated analysis of connectomes: the configurable pipeline for the analysis of connectomes (C-PAC). Abstract presented at Neuroinformatics 2013; 27–29 August 2013; Karolinska Institute, Stockholm. (2012).

  62. 62.

    Shehzad, Z. et al. The preprocessed connectomes project quality assessment protocol—a resource for measuring the quality of MRI data. Abstract presented at Neuroinformatics 2015; 20–22 August 2015; Cairns, Australia. (2015).

  63. 63.

    Whitfield-Gabrieli, S. & Nieto-Castanon, A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2, 125–141 (2012).

    Google Scholar 

  64. 64.

    Zuo, X. N. et al. Toward reliable characterization of functional homogeneity in the human brain: preprocessing, scan duration, imaging resolution and computational space. Neuroimage 65, 374–386 (2013).

    Google Scholar 

  65. 65.

    Esteban, O. et al. FMRIPrep: a robust preprocessing pipeline for functional MRI. Preprint at (2018).

  66. 66.

    Rosen, A. et al. Quantitative assessment of structural image quality. Neuroimage 169, 407–418 (2018).

    Google Scholar 

  67. 67.

    Gordon, E. M. et al. Generation and evaluation of a cortical area parcellation from resting-state correlations. Cereb. Cortex 26, 288–303 (2016).

    Google Scholar 

  68. 68.

    Cammoun, L. et al. Mapping the human connectome at multiple scales with diffusion spectrum MRI. J. Neurosci. Methods 203, 386–397 (2012).

    Google Scholar 

  69. 69.

    Honnorat, N. et al. GraSP: Geodesic Graph-based Segmentation with Shape Priors for the functional parcellation of the cortex. Neuroimage 106, 207–221 (2015).

    CAS  Google Scholar 

  70. 70.

    Schaefer, A. et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. Cortex 1–20. (2017).

    Google Scholar 

  71. 71.

    Gorgolewski, K. J. et al. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci. Data 3, 1–9 (2016).

    Google Scholar 

  72. 72.

    Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17, 825–841 (2002).

    PubMed Central  PubMed  Google Scholar 

  73. 73.

    Power, J. D., Plitt, M., Kundu, P., Bandettini, P. A. & Martin, A. Temporal interpolation alters motion in fMRI scans: magnitudes and consequences for artifact detection. PLoS ONE 12, 1–20 (2017).

    Google Scholar 

  74. 74.

    Nichols, T. E. Notes on creating a standardized version of DVARS. Preprint at (2017).

  75. 75.

    Afyouni, S. & Nichols, T. E. Insight and inference for DVARS. Neuroimage 172, 291–312 (2018).

    PubMed Central  PubMed  Google Scholar 

  76. 76.

    Patel, A. X. et al. A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series. Neuroimage 95, 287–304 (2014).

    PubMed Central  PubMed  Google Scholar 

  77. 77.

    Greve, D. N. & Fischl, B. Accurate and robust brain image alignment using boundary-based registration. Neuroimage 48, 63–72 (2009).

    PubMed Central  PubMed  Google Scholar 

  78. 78.

    Jo, H. J. et al. Effective preprocessing procedures virtually eliminate distance-dependent motion artifacts in resting state FMRI. J. Appl. Math. (2013).

    Google Scholar 

  79. 79.

    Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S. & Petersen, S. E. Intrinsic and task-evoked network architectures of the human brain. Neuron 83, 238–251 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  80. 80.

    Lomb, N. R. Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39, 447–448 (1976).

    Google Scholar 

  81. 81.

    Hallquist, M. N., Hwang, K. & Luna, B. The nuisance of nuisance regression: spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity. Neuroimage 82, 208–225 (2013).

    Google Scholar 

  82. 82.

    Smith, S. M. & Brady, J. M. SUSAN—a new approach to low level image processing. Int. J. Comput. Vis. 23, 45–78 (1997).

    Google Scholar 

  83. 83.

    Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, P1008 (2008).

    Google Scholar 

  84. 84.

    Girvan, M. & Newman, M. E. J. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002).

    CAS  Google Scholar 

  85. 85.

    Zang, Y., Jiang, T., Lu, Y., He, Y. & Tian, L. Regional homogeneity approach to fMRI data analysis. Neuroimage 22, 394–400 (2004).

    Google Scholar 

  86. 86.

    Yu-Feng, Z. et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev. 29, 83–91 (2007).

    Google Scholar 

  87. 87.

    Satterthwaite, T. D. et al. Neuroimaging of the Philadelphia Neurodevelopmental Cohort. Neuroimage 86, 544–553 (2014).

    Google Scholar 

  88. 88.

    Pruim, R. H. R., Mennes, M., Buitelaar, J. K. & Beckmann, C. F. Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI. Neuroimage 112, 278–287 (2015).

    Google Scholar 

Download references


This work was supported by grants from the National Institutes of Health: R01MH107703 (T.D.S.), R01MH112847 (T.D.S.), R21MH106799 (D.S.B. and T.D.S.), R01EB022573 (C.D.), and R01MH101111 (D.H.W.); and the Lifespan Brain Institute at Penn/CHOP. D.S.B. acknowledges support from the John D. and Catherine T. MacArthur Foundation, the Alfred P. Sloan Foundation, the Army Research Laboratory through contract number W911NF1020022, the Army Research Office through contract numbers W911NF1410679 and W911NF1610474, and the National Institute of Health (grants R01DC00920911, R01HD086888, R01MH107235, R01MH109520, and R01NS099348).The content is solely the responsibility of the authors and does not necessarily represent the official views of any of the funding agencies.

Author information




T.D.S., D.H.W., and R.C. developed and designed the protocol with numerous contributions from the functional neuroimaging community. R.C. developed the software implementation of the protocol. R.C., A.F.G.R., M.C., and A.A. developed the associated software libraries. M.C. and A.A. built Docker and Singularity containers for the associated software libraries. G.E. reviewed and tested the code and implemented the software on the Image Processing Portal. G.E., P.A.C., D.S.B., and C.D. provided consultation and guidance for methodological implementation and interpretation of results. R.C. and T.D.S. wrote the manuscript. R.C. prepared the figures and tables. All authors reviewed and revised the manuscript.

Corresponding author

Correspondence to Theodore D. Satterthwaite.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Satterthwaite, T. D. et al. Neuroimage 64, 240–256 (2013):

Ciric, R. et al. Neuroimage 154, 174–187 (2017):

Satterthwaite, T. D. et al. Neuroimage 83, 45–57 (2013):

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ciric, R., Rosen, A.F.G., Erus, G. et al. Mitigating head motion artifact in functional connectivity MRI. Nat Protoc 13, 2801–2826 (2018).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing