Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Large-scale reconstruction of cell lineages using single-cell readout of transcriptomes and CRISPR–Cas9 barcodes by scGESTALT

Abstract

Lineage relationships among the large number of heterogeneous cell types generated during development are difficult to reconstruct in a high-throughput manner. We recently established a method, scGESTALT, that combines cumulative editing of a lineage barcode array by CRISPR–Cas9 with large-scale transcriptional profiling using droplet-based single-cell RNA sequencing (scRNA-seq). The technique generates edits in the barcode array over multiple timepoints using Cas9 and pools of single-guide RNAs (sgRNAs) introduced during early and late zebrafish embryonic development, which distinguishes it from similar Cas9 lineage-tracing methods. The recorded lineages are captured, along with thousands of cellular transcriptomes, to build lineage trees with hundreds of branches representing relationships among profiled cell types. Here, we provide details for (i) generating transgenic zebrafish; (ii) performing multi-timepoint barcode editing; (iii) building scRNA-seq libraries from brain tissue; and (iv) concurrently amplifying lineage barcodes from captured single cells. Generating transgenic lines takes 6 months, and performing barcode editing and generating single-cell libraries involve 7 d of hands-on time. scGESTALT provides a scalable platform to map lineage relationships between cell types in any system that permits genome editing during development, regeneration, or disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Simultaneous recovery of lineages and cell types at single-cell resolution using scGESTALT.
Fig. 2: Strategy for a CRISPR–Cas9 system that enables early and late barcode editing.
Fig. 3: Transcriptome and scGESTALT library preparation overview.
Fig. 4: Barcode copy-number determination.
Fig. 5: scGESTALT barcode editing.
Fig. 6: Bioanalyzer electropherograms of scGESTALT sequencing libraries.
Fig. 7: Zebrafish brain lineage tree generated using scGESTALT.

Similar content being viewed by others

Data availability

Figure 4 has associated raw data (Supplementary Data). There is no restriction on data availability. scGESTALT computational scripts and analysis pipeline are available at https://github.com/aaronmck/SC_GESTALT and are included as Supplementary Software 2 with this protocol.

References

  1. Tanay, A. & Regev, A. Scaling single-cell genomics from phenomenology to mechanism. Nature 541, 331–338 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wagner, A., Regev, A. & Yosef, N. Revealing the vectors of cellular identity with single-cell genomics. Nat. Biotechnol. 34, 1145–1160 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kelsey, G., Stegle, O. & Reik, W. Single-cell epigenomics: recording the past and predicting the future. Science 358, 69–75 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Han, X. et al. Mapping the mouse cell atlas by Microwell-Seq. Cell 172, 1091–1107.e17 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Gierahn, T. M. et al. Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nat. Methods 14, 395–398 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cao, J. et al. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357, 661–667 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rosenberg, A. B. et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360, 176–182 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Habib, N. et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat. Methods 14, 955–958 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cusanovich, D. A. et al. Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348, 910–914 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ramani, V. et al. Massively multiplex single-cell Hi-C. Nat. Methods 14, 263–266 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lake, B. B. et al. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat. Biotechnol. 36, 70–80 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Preissl, S. et al. Single-nucleus analysis of accessible chromatin in developing mouse forebrain reveals cell-type-specific transcriptional regulation. Nat. Neurosci. 21, 432–439 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mulqueen, R. M. et al. Highly scalable generation of DNA methylation profiles in single cells. Nat. Biotechnol. 36, 428–431 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36, 421–427 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kiselev, V. Y., Yiu, A. & Hemberg, M. scmap: projection of single-cell RNA-seq data across data sets. Nat. Methods 15, 359–362 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Shekhar, K. et al. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166, 1308–1323.e30 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pandey, S., Shekhar, K., Regev, A. & Schier, A. F. Comprehensive identification and spatial mapping of Habenular neuronal types using single-cell RNA-seq. Curr. Biol. 28, 1052–1065.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cusanovich, D. A. et al. The cis-regulatory dynamics of embryonic development at single-cell resolution. Nature 555, 538–542 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290.e17 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Halpern, K. B. et al. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542, 352–356 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. La Manno, G. et al. Molecular diversity of midbrain development in mouse, human, and stem cells. Cell 167, 566–580.e19 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Da Mi et al. Early emergence of cortical interneuron diversity in the mouse embryo. Science 360, 81–85 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tusi, B. K. et al. Population snapshots predict early haematopoietic and erythroid hierarchies. Nature 555, 54–60 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hrvatin, S. et al. Single-cell analysis of experience-dependent transcriptomic states in the mouse visual cortex. Nat. Neurosci. 21, 120–129 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Baron, M. et al. A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure. Cell Syst. 3, 346–360.e4 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Haber, A. L. et al. A single-cell survey of the small intestinal epithelium. Nature 551, 333–339 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Park, J. et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science 360, 758–763 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hochgerner, H., Zeisel, A., Lönnerberg, P. & Linnarsson, S. Conserved properties of dentate gyrus neurogenesis across postnatal development revealed by single-cell RNA sequencing. Nat. Neurosci. 21, 290–299 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Nowakowski, T. J. et al. Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex. Science 358, 1318–1323 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Farrell, J. A. et al. Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. Science 360, eaar3131 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wagner, D. E. et al. Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo. Science 360, 981–987 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Briggs, J. A. et al. The dynamics of gene expression in vertebrate embryogenesis at single-cell resolution. Science 360, eaar5780 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Spanjaard, B. & Junker, J. P. Methods for lineage tracing on the organism-wide level. Curr. Opin. Cell Biol. 49, 16–21 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Woodworth, M. B., Girskis, K. M. & Walsh, C. A. Building a lineage from single cells: genetic techniques for cell lineage tracking. Nat. Rev. Genet. 18, 230–244 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ma, J., Shen, Z., Yu, Y.-C. & Shi, S.-H. Neural lineage tracing in the mammalian brain. Curr. Opin. Neurobiol. 50, 7–16 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Sun, J. et al. Clonal dynamics of native haematopoiesis. Nature 514, 322–327 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lodato, M. A. et al. Somatic mutation in single human neurons tracks developmental and transcriptional history. Science 350, 94–98 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pei, W. et al. Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. Nature 548, 456–460 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fuentealba, L. C. et al. Embryonic origin of postnatal neural stem cells. Cell 161, 1644–1655 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Harwell, C. C. et al. Wide dispersion and diversity of clonally related inhibitory interneurons. Neuron 87, 999–1007 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mayer, C. et al. Clonally related forebrain interneurons disperse broadly across both functional areas and structural boundaries. Neuron 87, 989–998 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rodriguez-Fraticelli, A. E. et al. Clonal analysis of lineage fate in native haematopoiesis. Nature 553, 212–216 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Perez-Pinera, P. et al. RNA-guided gene activation by CRISPR-Cas9–based transcription factors. Nat. Methods 10, 973–976 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Maeder, M. L. et al. CRISPR RNA–guided activation of endogenous human genes. Nat. Methods 10, 977–979 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cheng, A. W. et al. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res. 23, 1163–1171 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Deng, W., Shi, X., Tjian, R., Lionnet, T. & Singer, R. H. CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells. Proc. Natl. Acad. Sci. USA 112, 11870–11875 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu, X. et al. In situ capture of chromatin interactions by biotinylated dCas9. Cell 170, 1028–1043.e19 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liao, H.-K. et al. In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation. Cell 171, 1495–1507.e15 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Datlinger, P. et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14, 297–301 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dixit, A. et al. Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866.e17 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tang, W. & Liu, D. R. Rewritable multi-event analog recording in bacterial and mammalian cells. Science 360, eaap8992 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kim, Y. B. et al. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat. Biotechnol. 35, 371–376 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nelles, D. A. et al. Programmable RNA tracking in live cells with CRISPR/Cas9. Cell 165, 488–496 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mikuni, T., Nishiyama, J., Sun, Y., Kamasawa, N. & Yasuda, R. High-throughput, high-resolution mapping of protein localization in mammalian brain by in vivo genome editing. Cell 165, 1803–1817 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Perli, S. D., Cui, C. H. & Lu, T. K. Continuous genetic recording with self-targeting CRISPR-Cas in human cells. Science 353, aag0511 (2016).

    Article  PubMed  Google Scholar 

  65. Chow, R. D. et al. AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma. Nat. Neurosci. 20, 1329–1341 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. McKenna, A. et al. Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science 353, aaf7907 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Frieda, K. L. et al. Synthetic recording and in situ readout of lineage information in single cells. Nature 541, 107–111 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Alemany, A., Florescu, M., Baron, C. S., Peterson-Maduro, J. & van Oudenaarden, A. Whole-organism clone tracing using single-cell sequencing. Nature 556, 108 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Spanjaard, B. et al. Simultaneous lineage tracing and cell-type identification using CRISPR-Cas9-induced genetic scars. Nat. Biotechnol. 36, 469–473 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kalhor, R., Mali, P. & Church, G. M. Rapidly evolving homing CRISPR barcodes. Nat. Methods 14, 195–200 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Schmidt, S. T., Zimmerman, S. M., Wang, J., Kim, S. K. & Quake, S. R. Quantitative analysis of synthetic cell lineage tracing using nuclease barcoding. ACS Synth. Biol. 6, 936–942 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Raj, B. et al. Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain. Nat. Biotechnol. 36, 442–450 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zilionis, R. et al. Single-cell barcoding and sequencing using droplet microfluidics. Nat. Protoc. 12, 44–73 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Lodato, M. A. et al. Aging and neurodegeneration are associated with increased mutations in single human neurons. Science 359, 555–559 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Bae, T. et al. Different mutational rates and mechanisms in human cells at pregastrulation and neurogenesis. Science 359, 550–555 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Kawakami, K. Tol2: a versatile gene transfer vector in vertebrates. Genome Biol. 8 (Suppl. 1), S7 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Suster, M. L., Abe, G., Schouw, A. & Kawakami, K. Transposon-mediated BAC transgenesis in zebrafish. Nat. Protoc. 6, 1998–2021 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Fisher, S. et al. Evaluating the biological relevance of putative enhancers using Tol2 transposon-mediated transgenesis in zebrafish. Nat. Protoc. 1, 1297–1305 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Pan, Y. A. et al. Zebrabow: multispectral cell labeling for cell tracing and lineage analysis in zebrafish. Development 140, 2835–2846 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yin, L. et al. Multiplex conditional mutagenesis using transgenic expression of Cas9 and sgRNAs. Genetics 200, 431–441 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D.E. Wagner, A. McKenna, and S. Pandey for discussion and advice. This work was supported by a postdoctoral fellowship from the Canadian Institutes of Health Research to B.R.; NIH grants U01MH109560, R01HD85905, and DP1 HD094764 to A.F.S.; and an Allen Discovery Center grant to A.F.S.

Author information

Authors and Affiliations

Authors

Contributions

B.R. and J.A.G. developed and optimized the scGESTALT protocols and analyzed the data. B.R. wrote the manuscript with edits by A.F.S. and J.A.G.

Corresponding author

Correspondence to Bushra Raj.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Raj, B. et al. Nat. Biotechnol. 36, 442–450 (2018): https://doi.org/10.1038/nbt.4103

McKenna, A. et al. Science 353, aaf7907 (2016): https://doi.org/10.1126/science.aaf7907

Integrated supplementary information

Supplementary Figure 1 Papain oxygenation setup.

Left and middle panels, 95%O2: 5%CO2 gas tank fitted with a gas regulator, Tygon E-3603 tubing and a 5 ml serological pipette. Right panel, Oxygenation of papain/DNase mix in Neurobasal Medium (small vial to the right) is performed by bubbling 95%O2: 5%CO2 gas through tubing attached to a sterile 5 ml serological pipette for 2 min (Procedure Step 52). EBSS buffer (large vial to the left, used for resuspending ovumucoid, Procedure Step 53) and Neurobasal Medium (Procedure Step 50) are oxygenated in a similar manner.

Supplementary Figure 2 Zebrafish brain dissection.

Top panels, Anesthetized fish is transferred to a Sylgard dish covered with Neurobasal Medium and MESAB (left). The fish is pinned just posterior of the head, in the middle of the trunk and near the tail using 3 insect pins (right, asterisks mark pin positions). Bottom panels, The jaw, eyes, heart and gut tissues are removed. The skin on top of the head is pierced and peeled back to expose the brain (left, circle marks the exposed brain). Gently scoop the brain out taking care not to lose part of the hindbrain in the process (right, whole brain is encircled).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, B., Gagnon, J.A. & Schier, A.F. Large-scale reconstruction of cell lineages using single-cell readout of transcriptomes and CRISPR–Cas9 barcodes by scGESTALT. Nat Protoc 13, 2685–2713 (2018). https://doi.org/10.1038/s41596-018-0058-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-018-0058-x

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing