Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Design of capillary microfluidics for spinning cell-laden microfibers

Abstract

This protocol describes the design of capillary microfluidics for spinning bioactive (cell-laden) microfibers for three-dimensional (3D) cell culture and tissue-engineering applications. We describe the assembly of three types of microfluidic systems: (i) simple injection capillary microfluidics for the spinning of uniform microfibers; (ii) hierarchical injection capillary microfluidics for the spinning of core–shell or spindle-knot structured microfibers; and (iii) multi-barrel injection capillary microfluidics for the spinning of microfibers with multiple components. The diverse morphologies of these bioactive microfibers can be further assembled into higher-order structures that are similar to the hierarchical structures in tissues. Thus, by using different types of capillary microfluidic devices, diverse styles of microfibers with different bioactive encapsulation can be generated. These bioactive microfibers have potential applications in 3D cell culture, the mimicking of vascular structures, the creation of synthetic tissues, and so on. The whole protocol for device fabrication and microfiber spinning takes ~1 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic showing types of cell-laden microfibers that can be spun from a capillary microfluidic platform.
Fig. 2: Schematic illustrations of the capillary microfluidics.
Fig. 3: Images of the capillary microfluidics assembly procedure.
Fig. 4: Schematic illustrations and cross-sectional microscopy images of the microfibers.
Fig. 5: Schematic illustrations, and fluorescent and cross-sectional microscopy images of the spindle-knotted microfibers.
Fig. 6: Cell-laden microfibers for 3D cell culture and tissue-construct creation.

Similar content being viewed by others

References

  1. Langer, R. & Vacanti, J. P. Tissue engineering. Science 260, 920–926 (1993).

    Article  CAS  Google Scholar 

  2. Place, E. S., George, J. H., Williams, C. K. & Stevens, M. M. Synthetic polymer scaffolds for tissue engineering. Chem. Soc. Rev. 38, 1139–1151 (2009).

    Article  CAS  Google Scholar 

  3. Sivagnanam, V. & Gijs, M. A. Exploring living multicellular organisms, organs, and tissues using microfluidic systems. Chem. Rev. 113, 3214–3247 (2013).

    Article  CAS  Google Scholar 

  4. Huh, D., Hamilton, G. A. & Ingber, D. E. From 3D cell culture to organs-on-chips. Trends Cell Bio. 21, 745–754 (2011).

    Article  CAS  Google Scholar 

  5. Kolesky, D. B., Homan, K. A., Skylar-Scott, M. A. & Lewis, J. A. Three-dimensional bioprinting of thick vascularized tissues. Proc. Natl. Acad. Sci. USA 113, 3179–3184 (2016).

    Article  CAS  Google Scholar 

  6. Yamada, K. M. & Cukierman, E. Modeling tissue morphogenesis and cancer in 3D. Cell 130, 601–610 (2007).

    Article  CAS  Google Scholar 

  7. Pampaloni, F., Reynaud, E. G. & Stelzer, E. H. The third dimension bridges the gap between cell culture and live tissue. Nat. Rev. Mol. Cell Biol. 8, 839–845 (2007).

    Article  CAS  Google Scholar 

  8. Zheng, F. et al. Organ-on-a-chip systems: microengineering to biomimic living systems. Small 12, 2253–2282 (2016).

    Article  CAS  Google Scholar 

  9. Morimoto, Y. & Takeuchi, S. Three-dimensional cell culture based on microfluidic techniques to mimic living tissues. Biomater. Sci. 1, 257–264 (2013).

    Article  CAS  Google Scholar 

  10. Derby, B. Printing and prototyping of tissues and scaffolds. Science 338, 921–926 (2012).

    Article  CAS  Google Scholar 

  11. Pati, F., Gantelius, J. & Svahn, H. A. 3D bioprinting of tissue/organ models. Angew. Chem. Int. Ed. Engl. 55, 4650–4665 (2016).

    Article  CAS  Google Scholar 

  12. Wang, H. & Heilshorn, S. C. Adaptable hydrogel networks with reversible linkages for tissue engineering. Adv. Mater. 27, 3717–3736 (2015).

    Article  CAS  Google Scholar 

  13. Wang, J. et al. Microfluidic generation of porous microcarriers for three-dimensional cell culture. ACS Appl. Mater. Interfaces 7, 27035–27039 (2015).

    Article  CAS  Google Scholar 

  14. Yang, J. et al. Biomimetic nanofibers can construct effective tissue-engineered intervertebral discs for therapeutic implantation. Nanoscale 9, 13095–13103 (2017).

    Article  CAS  Google Scholar 

  15. Leong, M. F. et al. Patterned prevascularised tissue constructs by assembly of polyelectrolyte hydrogel fibres. Nat. Commun. 4, 2353 (2013).

    Article  Google Scholar 

  16. Arrigoni, C. et al. Rational design of prevascularized large 3D tissue constructs using computational simulations and biofabrication of geometrically controlled microvessels. Adv. Healthc. Mater. 5, 1617–1626 (2016).

    Article  CAS  Google Scholar 

  17. Wang, N. et al. A strategy for rapid and facile fabrication of controlled, layered blood vessel-like structures. RSC Adv. 6, 55054–55063 (2016).

    Article  CAS  Google Scholar 

  18. Headen, D. M., Aubry, G., Lu, H. & García, A. J. Microfluidic-based generation of size-controlled, biofunctionalized synthetic polymer microgels for cell encapsulation. Adv. Mater. 26, 3003–3008 (2014).

    Article  CAS  Google Scholar 

  19. Chung, B. G., Lee, K. H., Khademhosseinicdef, A. & Lee, S. H. Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering. Lab Chip 12, 45–59 (2012).

    Article  CAS  Google Scholar 

  20. Yuan, B. et al. A strategy for depositing different types of cells in three dimensions to mimic tubular structures in tissues. Adv. Mater. 24, 890–896 (2012).

    Article  CAS  Google Scholar 

  21. Onoe, H. et al. Metre-long cell-laden microfibres exhibit tissue morphologies and functions. Nat. Mater. 12, 584–590 (2013).

    Article  CAS  Google Scholar 

  22. Wu, F. et al. A novel synthetic microfiber with controllable size for cell encapsulation and culture. J. Mater. Chem. B 4, 2455–2465 (2016).

    Article  CAS  Google Scholar 

  23. Onoe, H. & Takeuchi, S. Cell-laden microfibers for bottom-up tissue engineering. Drug Discov. Today 20, 236–246 (2015).

    Article  CAS  Google Scholar 

  24. Cheng, Y. et al. Controlled fabrication of bioactive microfibers for creating tissue constructs using microfluidic techniques. ACS Appl. Mater. Interfaces 8, 1080–1086 (2016).

    Article  CAS  Google Scholar 

  25. Shabahang, S. et al. Controlled fragmentation of multimaterial fibres and films via polymer cold-drawing. Nature 534, 529–533 (2016).

    Article  CAS  Google Scholar 

  26. Zhang, C. L. & Yu, S. H. Spraying functional fibres by electrospinning. Mater. Horiz. 3, 266–269 (2016).

    Article  CAS  Google Scholar 

  27. Liu, Y., Rafailovich, M. H., Malal, R., Cohn, D. & Chidambaram, D. Engineering of bio-hybrid materials by electrospinning polymer-microbe fibers. Proc. Natl. Acad. Sci. 106, 14201–14206 (2009).

    Article  CAS  Google Scholar 

  28. Khalid, B. et al. Direct blow-spinning of nanofibers on a window screen for highly efficient PM2. 5 removal. Nano Lett. 17, 1140–1148 (2017).

    Article  CAS  Google Scholar 

  29. Cheng, J., Jun, Y., Qin, J. & Lee, S. H. Electrospinning versus microfluidic spinning of functional fibers for biomedical applications. Biomaterials 114, 121–143 (2017).

    Article  CAS  Google Scholar 

  30. Yoo, I., Song, S., Uh, K., Lee, C. W. & Kim, J. M. Size-controlled fabrication of polyaniline microfibers based on 3D hydrodynamic focusing approach. Macromol. Rapid Commun. 36, 1272–1276 (2015).

    Article  CAS  Google Scholar 

  31. Daniele, M. A., Boyd, D. A., Adams, A. A. & Ligler, F. S. Microfluidic strategies for design and assembly of microfibers and nanofibers with tissue engineering and regenerative medicine applications. Adv. Healthc. Mater. 4, 11–28 (2015).

    Article  CAS  Google Scholar 

  32. Jun, Y., Kang, E., Chae, S. & Lee, S. H. Microfluidic spinning of micro- and nano-scale fibers for tissue engineering. Lab Chip 14, 2145–2160 (2014).

    Article  CAS  Google Scholar 

  33. Shang, L. et al. Bioinspired multifunctional spindle-knotted microfibers from microfluidics. Small 13, 1600286 (2017).

    Article  Google Scholar 

  34. Håti, A. G. et al. Versatile, cell and chip friendly method to gel alginate in microfluidic devices. Lab Chip 16, 3718–3727 (2016).

    Article  Google Scholar 

  35. Whitesides, G. M. The origins and the future of microfluidics. Nature 442, 368–373 (2006).

    Article  CAS  Google Scholar 

  36. Atencia, J. & Beebe, D. J. Controlled microfluidic interfaces. Nature 437, 648–655 (2004).

    Article  Google Scholar 

  37. Shang, L., Cheng, Y. & Zhao, Y. Emerging droplet microfluidics. Chem. Rev. 117, 7964–8040 (2017).

    Article  CAS  Google Scholar 

  38. Nunes, J. K., Tsai, S. S. H., Wan, J. & Stone, H. A. Dripping and jetting in microfluidic multiphase flows applied to particle and fibre synthesis. J. Phys. D Appl. Phys. 46, 114002 (2013).

    Article  Google Scholar 

  39. Aminian, M., Bernardi, F., Camassa, R., Harris, D. M. & McLaughlin, R. M. How boundaries shape chemical delivery in microfluidics. Science 354, 1252–1256 (2016).

    Article  CAS  Google Scholar 

  40. Yoon, D. H., Tanaka, D., Sekiguchi, T. & Shoji, S. Microfluidic stamping on sheath flow. Small 12, 3224–3228 (2016).

    Article  CAS  Google Scholar 

  41. Zhu, P., Kong, T., Kang, Z., Tian, X. & Wang, L. Tip-multi-breaking in capillary microfluidic devices. Sci. Rep. 5, 11102 (2015).

    Article  CAS  Google Scholar 

  42. Kim, S. H. & Weitz, D. A. One-step emulsification of multiple concentric shells with capillary microfluidic devices. Angew. Chem. 123, 8890–8893 (2011).

    Article  Google Scholar 

  43. Song, Y., Sauret, A. & Cheung Shum, H. All-aqueous multiphase microfluidics. Biomicrofluidics 7, 061301 (2013).

    Article  Google Scholar 

  44. Mak, S. Y., Chao, Y. & Shum, H. C. The dripping-to-jetting transition in a co-axial flow of aqueous two-phase systems with low interfacial tension. RSC Adv. 7, 3287–3292 (2017).

    Article  Google Scholar 

  45. Guillot, P., Colin, A., Utada, A. S. & Ajdari, A. Stability of a jet in confined pressure-driven biphasic flows at low Reynolds numbers. Phys. Rev. Lett. 99, 104502 (2007).

    Article  Google Scholar 

  46. Lu, M. et al. Microfluidic hydrodynamic focusing for synthesis of nanomaterials. Nano Today 11, 778–792 (2016).

    Article  CAS  Google Scholar 

  47. Håkansson, K. M. et al. Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nat. Commun. 5, 4018 (2014).

    Article  Google Scholar 

  48. Cheng, Y. et al. Bioinspired multicompartmental microfibers from microfluidics. Adv. Mater. 26, 5184–5190 (2014).

    Article  CAS  Google Scholar 

  49. Zheng, Y. et al. Directional water collection on wetted spider silk. Nature 463, 640–643 (2010).

    Article  CAS  Google Scholar 

  50. Shang, L. et al. Double emulsions from a capillary array injection microfluidic device. Lab Chip 14, 3489–3493 (2014).

    Article  CAS  Google Scholar 

  51. Yu, Y. et al. Bioinspired helical microfibers from microfluidics. Adv. Mater. 29, 1605765 (2017).

    Article  Google Scholar 

  52. Xu, P. et al. Bioinspired microfibers with embedded perfusable helical channels. Adv. Mater. 29, 1701664 (2017).

    Article  Google Scholar 

  53. Nge, P. N., Rogers, C. I. & Woolley, A. T. Advances in microfluidic materials, functions, integration, and applications. Chem. Rev. 113, 2550–2583 (2013).

    Article  CAS  Google Scholar 

  54. Ren, K., Zhou, J. & Wu, H. Materials for microfluidic chip fabrication. Acc. Chem. Res. 46, 2396–2406 (2013).

    Article  CAS  Google Scholar 

  55. Wang, J. et al. Microfluidic generation of Buddha beads-like microcarriers for cell culture. Sci. China Mater. 60, 857–865 (2017).

    Article  Google Scholar 

  56. Yu, Y. et al. Microfluidic lithography of bioinspired helical micromotors. Angew. Chem. 56, 12127–12131 (2017).

    Article  CAS  Google Scholar 

  57. Tian, Y. et al. Large-scale water collection of bioinspired cavity-microfibers. Nat. Commun. 8, 1080 (2017).

    Article  Google Scholar 

  58. Shang, L. et al. Bio-inspired stimuli-responsive graphene oxide fibers from microfluidics. J. Mater. Chem. A 5, 15026–15030 (2017).

    Article  CAS  Google Scholar 

  59. Shin, S. J. et al. “On the fly” continuous generation of alginate fibers using a microfluidic device. Langmuir 23, 9104–9108 (2007).

    Article  CAS  Google Scholar 

  60. Abgrall, P. & Gue, A. M. Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem-a review. J. Micromech. Microeng. 17, R15 (2007).

    Article  Google Scholar 

  61. Iliescu, C., Taylor, H., Avram, M., Miao, J. & Franssila, S. A practical guide for the fabrication of microfluidic devices using glass and silicon. Biomicrofluidics 6, 016505 (2012).

    Article  Google Scholar 

  62. Kuo, J. S. & Chiu, D. T. Disposable microfluidic substrates: transitioning from the research laboratory into the clinic. Lab Chip 11, 2656–2665 (2011).

    Article  CAS  Google Scholar 

  63. McDonald, J. C. et al. Fabrication of microfluidic systems in poly (dimethylsiloxane). Electrophoresis 21, 27–40 (2000).

    Article  CAS  Google Scholar 

  64. Unger, M. A., Chou, H. P., Thorsen, T., Scherer, A. & Quake, S. R. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288, 113–116 (2000).

    Article  CAS  Google Scholar 

  65. Yu, Y. et al. Simple spinning of heterogeneous hollow microfibers on chip. Adv. Mater. 28, 6649–6655 (2016).

    Article  CAS  Google Scholar 

  66. Kang, E. et al. Digitally tunable physicochemical coding of material composition and topography in continuous microfibres. Nat. Mater. 10, 877–883 (2011).

    Article  CAS  Google Scholar 

  67. Siegel, A. C. et al. Cofabrication: a strategy for building multicomponent microsystems. Acc. Chem. Res. 43, 518–528 (2010).

    Article  CAS  Google Scholar 

  68. Liu, C. Recent developments in polymer MEMS. Adv. Mater. 19, 3783–3790 (2007).

    Article  CAS  Google Scholar 

  69. Sun, K., Wang, Z. & Jiang, X. Modular microfluidics for gradient generation. Lab Chip 8, 1536–1543 (2008).

    Article  CAS  Google Scholar 

  70. Hu, M. et al. Hydrodynamic spinning of hydrogel fibers. Biomaterials 31, 863–869 (2010).

    Article  CAS  Google Scholar 

  71. Au, A. K., Huynh, W., Horowitz, L. F. & Folch, A. 3D-printed microfluidics. Angew. Chem. Int. Ed. 55, 3862–3881 (2016).

    Article  CAS  Google Scholar 

  72. Ho, C. M. B., Ng, S. H., Li, K. H. H. & Yoon, Y. J. 3D printed microfluidics for biological applications. Lab Chip 15, 3627–3637 (2015).

    Article  CAS  Google Scholar 

  73. Sperling, L. E., Reis, K. P., Pranke, P. & Wendorff, J. H. Advantages and challenges offered by biofunctional core-shell fiber systems for tissue engineering and drug delivery. Drug Discov. Today 21, 1243–1256 (2016).

    Article  CAS  Google Scholar 

  74. Xiong, B. et al. Recent developments in microfluidics for cell studies. Adv. Mater. 26, 5525–5532 (2014).

    Article  CAS  Google Scholar 

  75. Hosseini, V. et al. Fiber-assisted molding (FAM) of surfaces with tunable curvature to guide cell alignment and complex tissue architecture. Small 10, 4851–4857 (2014).

    Article  CAS  Google Scholar 

  76. Akbari, M. et al. Textile technologies and tissue engineering: a path toward organ weaving. Adv. Healthc. Mater. 5, 751–766 (2016).

    Article  CAS  Google Scholar 

  77. Russell, P. Photonic crystal fibers. Science 299, 358–362 (2003).

    Article  CAS  Google Scholar 

  78. Nichol, J. W. et al. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31, 5534–5536 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2017YFA0700404), the National Science Foundation of China (grants 51522302 and 21473029), the NSAF Foundation of China (grant U1530260), the Fundamental Research Funds for the Central Universities, the Scientific Research Foundation of Southeast University, and the Scientific Research Foundation of the Graduate School of Southeast University.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. conceived the idea and designed the experiment. Y.Y. carried out the experiments. Y.Y., L.S., and Y.Z. analyzed the data and wrote the paper. J.G. and J.W. contributed to scientific discussion of the article.

Corresponding author

Correspondence to Yuanjin Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

1. Onoe, H. et al. Nat. Mater. 12, 584–590 (2013): https://www.nature.com/articles/nmat3606

2. Cheng, Y. et al. Adv. Mater. 26, 5184–5190 (2014): https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201400798

3. Cheng, Y. et al. ACS Appl. Mater. Interfaces 8, 1080–1086 (2016): https://pubs.acs.org/doi/abs/10.1021/acsami.5b11445

4. Wang, J. et al. Sci. China Mater. 60, 857–865 (2017): https://link.springer.com/article/10.1007/s40843-017-9081-5

Integrated supplementary information

Supplementary Figure 1 Schematic illustration and digital photographs of the tapered capillaries.

Schematic and digital photographs of the tapered capillary with a (a) tapered tip and (b) spindle tip.

Supplementary Figure 2 Close-up images of the capillary assembly procedure.

(a) Immobilize the square capillary on the glass slide; (b) Assemble the injection and collection capillaries inside the square capillary with epoxy resin; (c) Insert the spindle injection capillary inside the origin injection channel with epoxy resin; (d) Cut the needles with small crevices at the bottom, and make their sizes match with that of the capillaries; (e) Coat the bottom margin of the needles with a thin layer of epoxy resin, and stand them onto the junctions of the capillaries. The upper of the (a-c, e) images are the corresponding scheme illustrations.

Supplementary Figure 3 Images of the simple microfluidic device, the spinning process and the produced simple microfiber.

(a) Digital photograph of the simple microfluidic device; (b) The microstructure of the device during the simple microfiber spinning; (c) Digital image of the continuous simple microfiber in a vessel; (d) Microscopic image of the generated cylindrical microfiber. Adapted with permission from Cheng et al. Bioinspired multicompartmental microfibers from microfluidics. Adv. Mater. 26, 5184–5190 (copyright 2014 Wiley) (https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201400798). The scale bar is 200 μm.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3

Reporting Summary

Supplementary Video 1

Creating tapered capillaries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Shang, L., Guo, J. et al. Design of capillary microfluidics for spinning cell-laden microfibers. Nat Protoc 13, 2557–2579 (2018). https://doi.org/10.1038/s41596-018-0051-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-018-0051-4

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research