Protocol Update | Published:

Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing

Nature Protocolsvolume 13pages24472461 (2018) | Download Citation

Abstract

DNA preserved in ancient bones, teeth and sediments is typically highly fragmented and present only in minute amounts. Here, we provide a highly versatile silica-based DNA extraction protocol that enables the retrieval of short (≥35 bp) or even ultrashort (≥25 bp) DNA fragments from such material with minimal carryover of substances that inhibit library preparation for high-throughput sequencing. DNA extraction can be performed with either silica spin columns, which offer the most convenient choice for manual DNA extraction, or silica-coated magnetic particles. The latter allow a substantial cost reduction as well as automation on liquid-handling systems. This protocol update replaces a now-outdated version that was published 11 years ago, before high-throughput sequencing technologies became widely available. It has been thoroughly optimized to provide the highest DNA yields from highly degraded samples, as well as fast and easy handling, requiring not more than ~15 min of hands-on time per sample.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key references using this protocol

1. Slon, V. et al. Science 356, 605–608 (2017): https://doi.org/10.1126/science.aam9695

2. Meyer, M. et al. Nature 505, 403–406 (2014): https://doi.org/10.1038/nature12788

3. Olalde, I. et al. Nature 555, 190–196 (2018): https://doi.org/10.1038/nature25738

This protocol is an update to: Nat. Protoc. 2, 1756–1762 (2007): https://doi.org/10.1038/nprot.2007.247

References

  1. 1.

    Meyer, M. et al. A mitochondrial genome sequence of a hominin from Sima de los Huesos. Nature 505, 403–406 (2014).

  2. 2.

    Orlando, L. et al. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499, 74–78 (2013).

  3. 3.

    Willerslev, E. et al. Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300, 791–795 (2003).

  4. 4.

    Slon, V. et al. Neandertal and Denisovan DNA from Pleistocene sediments. Science 356, 605–608 (2017).

  5. 5.

    Höss, M. & Pääbo, S. DNA extraction from Pleistocene bones by a silica-based purification method. Nucleic Acids Res. 21, 3913–3914 (1993).

  6. 6.

    Rohland, N. & Hofreiter, M. Ancient DNA extraction from bones and teeth. Nat. Protoc. 2, 1756–1762 (2007).

  7. 7.

    Yang, D. Y., Eng, B., Waye, J. S., Dudar, J. C. & Saunders, S. R. Technical note: improved DNA extraction from ancient bones using silica-based spin columns. Am. J. Phys. Anthropol. 105, 539–543 (1998).

  8. 8.

    Pääbo, S. et al. Genetic analyses from ancient DNA. Annu. Rev. Genet. 38, 645–679 (2004).

  9. 9.

    Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl. Acad. Sci. USA 110, 15758–15763 (2013).

  10. 10.

    Adler, C. J., Haak, W., Donlon, D. & Cooper, A. Survival and recovery of DNA from ancient teeth and bones. J. Archaeol. Sci. 38, 956–964 (2011).

  11. 11.

    Allentoft, M. E. et al. The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proc. Biol. Sci. 279, 4724–4733 (2012).

  12. 12.

    Handt, O., Höss, M., Krings, M. & Pääbo, S. Ancient DNA: methodological challenges. Experientia 50, 524–529 (1994).

  13. 13.

    Schwarz, C. et al. New insights from old bones: DNA preservation and degradation in permafrost preserved mammoth remains. Nucleic Acids Res. 37, 3215–3229 (2009).

  14. 14.

    Gansauge, M. T. & Meyer, M. Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat. Protoc. 8, 737–748 (2013).

  15. 15.

    Meyer, M. et al. A high-coverage genome sequence from an Archaic Denisovan individual. Science 338, 222–226 (2012).

  16. 16.

    Meyer, M. et al. Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature 531, 504–507 (2016).

  17. 17.

    Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016).

  18. 18.

    Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015).

  19. 19.

    Lipson, M. et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature 551, 368–372 (2017).

  20. 20.

    Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015).

  21. 21.

    Glocke, I. & Meyer, M. Extending the spectrum of DNA sequences retrieved from ancient bones and teeth. Genome Res. 27, 1230–1237 (2017).

  22. 22.

    Lipson, M. et al. Ancient genomes document multiple waves of migration in Southeast Asian prehistory. Science https://doi.org/10.1126/science.aat3188 (2018).

  23. 23.

    Korlevic, P. et al. Reducing microbial and human contamination in DNA extractions from ancient bones and teeth. Biotechniques 59, 87–93 (2015).

  24. 24.

    Gamba, C. et al. Comparing the performance of three ancient DNA extraction methods for high-throughput sequencing. Mol. Ecol. Resour. 16, 459–469 (2016).

  25. 25.

    Allentoft, M. E. et al. Population genomics of Bronze Age Eurasia. Nature 522, 167–172 (2015).

  26. 26.

    Gutaker, R. M., Reiter, E., Furtwangler, A., Schuenemann, V. J. & Burbano, H. A. Extraction of ultrashort DNA molecules from herbarium specimens. Biotechniques 62, 76–79 (2017).

  27. 27.

    de Filippo, C., Meyer, M. & Pruefer, K. Harvesting information from ultra-short ancient DNA sequences. Preprint at https://www.biorxiv.org/content/early/2018/05/10/319277 (2018).

  28. 28.

    Fu, Q. M. et al. DNA analysis of an early modern human from Tianyuan Cave, China. Proc. Natl. Acad. Sci. USA 110, 2223–2227 (2013).

  29. 29.

    Gansauge, M. T. et al. Single-stranded DNA library preparation from highly degraded DNA using T4 DNA ligase. Nucleic Acids Res. 45, e79 (2017).

  30. 30.

    Bennett, E. A. et al. Library construction for ancient genomics: single strand or double strand? Biotechniques 56, 289–300 (2014).

  31. 31.

    Wales, N. et al. New insights on single-stranded versus double-stranded DNA library preparation for ancient DNA. Biotechniques 59, 368–371 (2015).

  32. 32.

    Briggs, A. W. & Heyn, P. Preparation of next-generation sequencing libraries. in Methods in Molecular Biology: Ancient DNA, Methods and Protocols, Vol. 840 (eds. Shapiro, B. & Hofreiter, M.) 143–154 (Humana Press, Totowa, NJ, 2012).

  33. 33.

    Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, pdb.prot5448 (2010).

  34. 34.

    Rohland, N., Harney, E., Mallick, S., Nordenfelt, S. & Reich, D. Partial uracil-DNA-glycosylase treatment for screening of ancient DNA. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20130624 (2015).

  35. 35.

    Knapp, M., Clarke, A. C., Horsburgh, K. A. & Matisoo-Smith, E. A. Setting the stage—building and working in an ancient DNA laboratory. Ann. Anat. 194, 3–6 (2012).

  36. 36.

    Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, e3 (2012).

Download references

Acknowledgements

We thank S. Pääbo and D. Reich for their support; A. Weihmann and B. Schellbach for performing the sequencing runs; J. Kelso and J. Visagie for help with raw data processing; N. Broomand, M. Ferry, M. Michel, J. Oppenheimer and K. Stewardson for support in the lab; and S. Mallick for bioinformatics processing of initial experiments. We also thank P. Rudan, C. Verna, T. Kutznetsova, K. Post, G. Rabeder, M. Shunkov, R. Roberts, A. Derevianko, R. Miller, J. Stewart and M. Soressi for providing the samples. This work was funded by the Strategic Innovation Fund of the Max Planck Society and ERC grant agreement no. 694707 to S. Pääbo.

Author information

Author notes

  1. These authors contributed equally: Nadin Rohland, Isabelle Glocke

Affiliations

  1. Department of Genetics, Harvard Medical School, Boston, MA, USA

    • Nadin Rohland
  2. Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany

    • Isabelle Glocke
    • , Ayinuer Aximu-Petri
    •  & Matthias Meyer

Authors

  1. Search for Nadin Rohland in:

  2. Search for Isabelle Glocke in:

  3. Search for Ayinuer Aximu-Petri in:

  4. Search for Matthias Meyer in:

Contributions

N.R., I.G., A.A.-P. and M.M. designed experiments. N.R., I.G. and A.A.-P. performed experiments. N.R., I.G. and M.M. analyzed the data and wrote the paper.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Nadin Rohland or Isabelle Glocke.

Supplementary information

  1. Supplementary Table 1

    Summary of sequencing results

  2. Reporting Summary

About this article

Publication history

Published

DOI

https://doi.org/10.1038/s41596-018-0050-5

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.