Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Generation and assembly of human brain region–specific three-dimensional cultures

Abstract

The ability to generate region-specific three-dimensional (3D) models to study human brain development offers great promise for understanding the nervous system in both healthy individuals and patients. In this protocol, we describe how to generate and assemble subdomain-specific forebrain spheroids, also known as brain region–specific organoids, from human pluripotent stem cells (hPSCs). We describe how to pattern the neural spheroids toward either a dorsal forebrain or a ventral forebrain fate, establishing human cortical spheroids (hCSs) and human subpallial spheroids (hSSs), respectively. We also describe how to combine the neural spheroids in vitro to assemble forebrain assembloids that recapitulate the interactions of glutamatergic and GABAergic neurons seen in vivo. Astrocytes are also present in the human forebrain–specific spheroids, and these undergo maturation when the forebrain spheroids are cultured long term. The initial generation of neural spheroids from hPSCs occurs in <1 week, with regional patterning occurring over the subsequent 5 weeks. After the maturation stage, brain region–specific spheroids are amenable to a variety of assays, including live-cell imaging, calcium dynamics, electrophysiology, cell purification, single-cell transcriptomics, and immunohistochemistry studies. Once generated, forebrain spheroids can also be matured for >24 months in culture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: General schematic for the generation of human forebrain spheroids from hPSCs.
Fig. 2: Outline of the human forebrain spheroid protocol.
Fig. 3: Images of forebrain spheroid formation.
Fig. 4: Expression of region-specific markers and fusion of dorsal and ventral neural spheroids into assembloids.

Similar content being viewed by others

References

  1. Pașca, S. P., Panagiotakos, G. & Dolmetsch, R. E. Generating human neurons in vitro and using them to understand neuropsychiatric disease. Annu. Rev. Neurosci. 37, 479–501 (2014).

    Article  PubMed  CAS  Google Scholar 

  2. Dolmetsch, R. & Geschwind, D. H. The human brain in a dish: the promise of iPSC-derived neurons. Cell 145, 831–834 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  PubMed  CAS  Google Scholar 

  4. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  PubMed  CAS  Google Scholar 

  5. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  PubMed  CAS  Google Scholar 

  6. Brennand, K. J. & Gage, F. H. Modeling psychiatric disorders through reprogramming. Dis. Model. Mech. 5, 26–32 (2012).

    Article  PubMed  Google Scholar 

  7. Tabar, V. & Studer, L. Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nat. Rev. Genet. 15, 82–92 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Brennand, K. J., Simone, A., Tran, N. & Gage, F. H. Modeling psychiatric disorders at the cellular and network levels. Mol. Psychiatry 17, 1239–1253 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Marchetto, M. C. et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143, 527–539 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Pașca, S. P. et al. Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nat. Med. 17, 1657–1662 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Brennand, K. J. et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature 473, 221–225 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Lee, G. et al. Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461, 402–406 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Wen, Z. et al. Synaptic dysregulation in a human iPS cell model of mental disorders. Nature 515, 414–418 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Kelava, I. & Lancaster, M. A. Stem cell models of human brain development. Cell Stem Cell 18, 736–748 (2016).

    Article  PubMed  CAS  Google Scholar 

  15. Di Lullo, E. & Kriegstein, A. R. The use of brain organoids to investigate neural development and disease. Nat. Rev. Neurosci. 18, 573–584 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Pașca, S. P. The rise of three-dimensional human brain cultures. Nature 553, 437–445 (2018).

    PubMed  Google Scholar 

  17. Pașca, A. M. et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat. Methods 12, 671–678 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Pașca, S. P. Personalized human cortical spheroids. Am. J. Psychiatry 173, 332–333 (2016).

    Article  PubMed  Google Scholar 

  19. Birey, F. et al. Assembly of functionally integrated human forebrain spheroids. Nature 545, 54–59 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Sloan, S. A. et al. Human astrocyte maturation captured in 3D cerebral cortical spheroids derived from pluripotent stem cells. Neuron 95, 779–790 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Deverman, B. E. et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat. Biotechnol. 34, 204–209 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Silbereis, J. C., Pochareddy, S., Zhu, Y., Li, M. & Sestan, N. The cellular and molecular landscapes of the developing human central nervous system. Neuron 89, 248–268 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Sousa, A. M. M., Meyer, K. A., Santpere, G., Gulden, F. O. & Sestan, N. Evolution of the human nervous system function, structure, and development. Cell 170, 226–247 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Stiles, J. & Jernigan, T. L. The basics of brain development. Neuropsychol. Rev. 20, 327–348 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wonders, C. P. & Anderson, S. A. The origin and specification of cortical interneurons. Nat. Rev. Neurosci. 7, 687–696 (2006).

    Article  PubMed  CAS  Google Scholar 

  26. Anderson, S. A., Marin, O., Horn, C., Jennings, K. & Rubenstein, J. L. Distinct cortical migrations from the medial and lateral ganglionic eminences. Development 128, 353–363 (2001).

    PubMed  CAS  Google Scholar 

  27. Ma, T. et al. Subcortical origins of human and monkey neocortical interneurons. Nat. Neurosci. 16, 1588–1597 (2013).

    Article  PubMed  CAS  Google Scholar 

  28. Paredes, M. F. et al. Extensive migration of young neurons into the infant human frontal lobe. Science 354, https://doi.org/10.1126/science.aaf7073 (2016).

  29. Kepecs, A. & Fishell, G. Interneuron cell types are fit to function. Nature 505, 318–326 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Marin, O. Interneuron dysfunction in psychiatric disorders. Nat. Rev. Neurosci. 13, 107–120 (2012).

    Article  PubMed  CAS  Google Scholar 

  31. Rubenstein, J. L. & Merzenich, M. M. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2, 255–267 (2003).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Sloan, S. A. & Barres, B. A. Mechanisms of astrocyte development and their contributions to neurodevelopmental disorders. Curr. Opin. Neurobiol. 27C, 75–81 (2014).

    Article  CAS  Google Scholar 

  33. Freeman, M. R. & Rowitch, D. H. Evolving concepts of gliogenesis: a look way back and ahead to the next 25 years. Neuron 80, 613–623 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).

    Article  PubMed  CAS  Google Scholar 

  35. Kadoshima, T. et al. Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proc. Natl. Acad. Sci. USA 110, 20284–20289 (2013).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Mariani, J. et al. FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell 162, 375–390 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Qian, X. et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165, 1238–1254 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Chambers, S. M., Mica, Y., Lee, G., Studer, L. & Tomishima, M. J. Dual-SMAD inhibition/WNT activation-based methods to induce neural crest and derivatives from human pluripotent stem cells. Methods Mol. Biol. https://doi.org/10.1007/7651_2013_59 (2013).

  39. Eiraku, M. et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3, 519–532 (2008).

    Article  PubMed  CAS  Google Scholar 

  40. Muguruma, K., Nishiyama, A., Kawakami, H., Hashimoto, K. & Sasai, Y. Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Rep. 10, 537–550 (2015).

    Article  PubMed  CAS  Google Scholar 

  41. Camp, J. G. et al. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc. Natl. Acad. Sci. USA 112, 15672–15677 (2015).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Bagley, J. A., Reumann, D., Bian, S., Levi-Strauss, J. & Knoblich, J. A. Fused cerebral organoids model interactions between brain regions. Nat. Methods https://doi.org/10.1038/nmeth.4304 (2017).

  43. Xiang, Y. et al. Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration. Cell Stem Cell 21, 383–398 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Quadrato, G., Brown, J. & Arlotta, P. The promises and challenges of human brain organoids as models of neuropsychiatric disease. Nat. Med. 22, 1220–1228 (2016).

    Article  PubMed  CAS  Google Scholar 

  45. Tian, Y. et al. Alteration in basal and depolarization induced transcriptional network in iPSC derived neurons from Timothy syndrome. Genome Med. 6, 75 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Sun, Y. et al. A deleterious Nav1.1 mutation selectively impairs telencephalic inhibitory neurons derived from Dravet Syndrome patients. eLife https://doi.org/10.7554/eLife.13073 (2016).

  47. Wang, X. & McManus, M. Lentivirus production. J. Vis. Exp. https://doi.org/10.3791/1499 (2009).

Download references

Acknowledgements

We thank the Pașca lab for experimental support. This work was supported by a US National Institute of Health (NIH) BRAINS Award (R01MH107800), the California Institute of Regenerative Medicine (CIRM), an MQ Fellow Award, and a Donald E. and Delia B. Baxter Foundation Award (to S.P.P.); NIMH T32GM007365, F30MH106261, and a Bio-X Predoctoral Fellowship (to S.A.S.); a Physician Scientist Development in Pediatrics Award (PSDP) and a Child Health Research Institute Postdoctoral Fellowship (to A.M.P.); Child Health Research Institute Postdoctoral Fellowship UL1-TR001085 (to F.B.); a Walter V. and Idun Berry Postdoctoral Fellowship (to J.A.); and Stanford Medicine’s Dean’s Fellowships (to F.B. and J.A.).

Author information

Authors and Affiliations

Authors

Contributions

S.A.S., J.A., A.M.P., and F.B. collected data and contributed to the optimizations of the protocols. S.A.S. and S.P.P. wrote the manuscript with input from all authors. S.P.P. supervised this work.

Corresponding author

Correspondence to Sergiu P. Pașca.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related Links

Key references using this protocol

Sloan, S. A. et al. Neuron 95, 779–790. (2017) https://doi.org/10.1016/j.neuron.2017.07.035

Birey, F. et al. Nature 545, 54–59 (2017) https://doi.org/10.1038/nature22330

Pașca, A. M. et al. Nat. Methods 12, 671–678 (2015) https://doi.org/10.1038/nmeth.3415

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sloan, S.A., Andersen, J., Pașca, A.M. et al. Generation and assembly of human brain region–specific three-dimensional cultures. Nat Protoc 13, 2062–2085 (2018). https://doi.org/10.1038/s41596-018-0032-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-018-0032-7

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing