Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Combined expansion microscopy with structured illumination microscopy for analyzing protein complexes

Abstract

Biologists have long been fascinated with the organization and function of intricate protein complexes. Therefore, techniques for precisely imaging protein complexes and the location of proteins within these complexes are critically important and often require multidisciplinary collaboration. A challenge in these explorations is the limited resolution of conventional light microscopy. However, a new microscopic technique has circumvented this resolution limit by making the biological sample larger, thus allowing for super-resolution of the enlarged structure. This ‘expansion’ is accomplished by embedding the sample in a hydrogel that, when exposed to water, uniformly expands. Here, we present a protocol that transforms thick expansion microscopy (ExM) hydrogels into sections that are physically expanded four times, creating samples that are compatible with the super-resolution technique structured illumination microscopy (SIM). This super-resolution ExM method (ExM–SIM) allows the analysis of the three-dimensional (3D) organization of multiprotein complexes at ~30-nm lateral (xy) resolution. This protocol details the steps necessary for analysis of protein localization using ExM–SIM, including antibody labeling, hydrogel preparation, protease digestion, post-digestion antibody labeling, hydrogel embedding with tissue-freezing medium (TFM), cryosectioning, expansion, image alignment, and particle averaging. We have used this approach for 3D mapping of in situ protein localization in the Drosophila synaptonemal complex (SC), but it can be readily adapted to study thick tissues such as brain and organs in various model systems. This procedure can be completed in 5 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the ExM-SIM protocol.
Fig. 2: Adjusting immersion oil to achieve successful SIM images for expansion samples.
Fig. 3: Straightening and averaging of profiles from expansion data.

Similar content being viewed by others

References

  1. Huang, B., Bates, M. & Zhuang, X. Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 78, 993–1016 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Schermelleh, L., Heintzmann, R. & Leonhardt, H. A guide to super-resolution fluorescence microscopy. J. Cell Biol. 190, 165–175 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Chen, F., Tillberg, P. W. & Boyden, E. S. Optical imaging expansion microscopy. Science 347, 543–548 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Chozinski, T. J. et al. Expansion microscopy with conventional antibodies and fluorescent proteins. Nat. Methods 13, 485–488 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Tillberg, P. W. et al. Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat. Biotechnol. 34, 987–992 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Ku, T. et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat. Biotechnol. 34, 973–981 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Chen, F. et al. Nanoscale imaging of RNA with expansion microscopy. Nat. Methods 13, 679–684 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Carlton, P. M. Three-dimensional structured illumination microscopy and its application to chromosome structure. Chromosome Res. 16, 351–365 (2008).

    Article  PubMed  CAS  Google Scholar 

  9. Cahoon, C. K. et al. Superresolution expansion microscopy reveals the three-dimensional organization of the Drosophila synaptonemal complex. Proc. Natl. Acad. Sci. USA 114, E6857–E6866 (2017).

    Article  PubMed  CAS  Google Scholar 

  10. Cheng, Y., Grigorieff, N., Penczek, P. A. & Walz, T. A primer to single-particle cryo-electron microscopy. Cell 161, 438–449 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Frank, J. Advances in the field of single-particle cryo-electron microscopy over the last decade. Nat. Protoc. 12, 209–212 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Burns, S. et al. Structured illumination with particle averaging reveals novel roles for yeast centrosome components during duplication. eLife 4, e08586 (2015).

  13. Zickler, D. & Kleckner, N. Recombination, pairing, and synapsis of homologs during meiosis. Cold Spring Harb. Perspect. Biol. 7, a016626 (2015).

  14. Schucker, K., Holm, T., Franke, C., Sauer, M. & Benavente, R. Elucidation of synaptonemal complex organization by super-resolution imaging with isotropic resolution. Proc. Natl. Acad. Sci. USA 112, 2029–2033 (2015).

    Article  PubMed  CAS  Google Scholar 

  15. Kohler, S., Wojcik, M., Xu, K. & Dernburg, A. F. Superresolution microscopy reveals the three-dimensional organization of meiotic chromosome axes in intact Caenorhabditis elegans tissue. Proc. Natl. Acad. Sci.USA 114, E4734–E4743 (2017).

    Article  PubMed  CAS  Google Scholar 

  16. Moses, M. J. Synaptinemal complex. Annu. Rev. Genet. 2, 363–412 (1968).

    Article  Google Scholar 

  17. Carpenter, A. T. Electron microscopy of meiosis in Drosophila melanogaster females. I. Structure, arrangement, and temporal change of the synaptonemal complex in wild-type. Chromosoma 51, 157–182 (1975).

    Article  PubMed  CAS  Google Scholar 

  18. Chang, J. B. et al. Iterative expansion microscopy. Nat. Methods 14, 593–599 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Gustafsson, M. G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198, 82–87 (2000).

    Article  PubMed  CAS  Google Scholar 

  20. Gustafsson, M. G. et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J. 94, 4957–4970 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Kner, P., Chhun, B. B., Griffis, E. R., Winoto, L. & Gustafsson, M. G. Super-resolution video microscopy of live cells by structured illumination. Nat. Methods 6, 339–342 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Klar, T. A. & Hell, S. W. Subdiffraction resolution in far-field fluorescence microscopy. Opt. Lett. 24, 954–956 (1999).

    Article  PubMed  CAS  Google Scholar 

  23. Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  PubMed  Google Scholar 

  25. Wildanger, D., Medda, R., Kastrup, L. & Hell, S. W. A compact STED microscope providing 3D nanoscale resolution. J. Microsc. 236, 35–43 (2009).

    Article  PubMed  CAS  Google Scholar 

  26. Dempsey, G. T., Vaughan, J. C., Chen, K. H., Bates, M. & Zhuang, X. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat. Methods 8, 1027–1036 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Ehmann, N. et al. Quantitative super-resolution imaging of Bruchpilot distinguishes active zone states. Nat. Commun. 5, 4650 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kittel, R. J. et al. Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 312, 1051–1054 (2006).

    Article  PubMed  CAS  Google Scholar 

  29. Sigal, Y. M., Speer, C. M., Babcock, H. P. & Zhuang, X. Mapping synaptic input fields of neurons with super-resolution imaging. Cell 163, 493–505 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Demmerle, J. et al. Strategic and practical guidelines for successful structured illumination microscopy. Nat. Protoc. 12, 988–1010 (2017).

    Article  PubMed  CAS  Google Scholar 

  31. Bharat, T. A. & Scheres, S. H. Resolving macromolecular structures from electron cryo-tomography data using subtomogram averaging in RELION. Nat. Protoc. 11, 2054–2065 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Anderson, L. K. et al. Juxtaposition of C(2)M and the transverse filament protein C(3)G within the central region of Drosophila synaptonemal complex. Proc. Natl. Acad. Sci. USA 102, 4482–4487 (2005).

    Article  PubMed  CAS  Google Scholar 

  33. Collins, K. A. et al. Corolla is a novel protein that contributes to the architecture of the synaptonemal complex of Drosophila. Genetics 198, 219–228 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Zhao, Y. et al. Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy. Nat. Biotechnol. 35, 757–764 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Halpern, A. R., Alas, G. C. M., Chozinski, T. J., Paredez, A. R. & Vaughan, J. C. Hybrid structured illumination expansion microscopy reveals microbial cytoskeleton organization. ACS Nano 11, 12677–12686 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Unnersjo-Jess, D. et al. Confocal super-resolution imaging of the glomerular filtration barrier enabled by tissue expansion. Kidney Int. https://doi.org/10.1016/j.kint.2017.09.019 (2017).

  37. Hausen, P. & Dreyer, C. The use of polyacrylamide as an embedding medium for Immunohistochemical studies of embryonic tissues. Stain Technol. 56, 287–293 (1981).

  38. Germroth, P. G., Gourdie, R. G. & Thompson, R. P. Confocal microscopy of thick sections from acrylamide gel embedded embryos. Microsc. Res. Tech. 30, 513–520 (1995).

    Article  PubMed  CAS  Google Scholar 

  39. Cang, H. et al. Ex-STORM: expansion single molecule nanoscopy. Preprint at bioRxiv https://doi.org/10.1101/049403 (2016).

  40. Gao, M. et al. Expansion stimulated emission depletion microscopy (ExSTED). ACS Nano 12, 4178–4185 (2018).

  41. Gambarotto, D. et al. Imaging beyond the super-resolution limits using ultrastructure expansion microscopy (UltraExM). Preprint at bioRxiv https://www.biorxiv.org/content/early/2018/04/25/308270 (2018).

  42. Lake, C. M. et al. Vilya, a component of the recombination nodule, is required for meiotic double-strand break formation in Drosophila. eLife 4, e08287 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ball, G. et al. SIMcheck: a toolbox for successful super-resolution structured illumination microscopy. Sci. Rep. 5, 15915 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Freifeld, L. et al. Expansion microscopy of zebrafish for neuroscience and developmental biology studies. Proc. Natl. Acad. Sci. USA 114, E10799–E10808 (2017).

    Article  PubMed  CAS  Google Scholar 

  45. Li, Q. et al. A facile one pot strategy for the synthesis of well-defined polyacrylates from acrylic acid via RAFT polymerization. Chem. Commun. 50, 3331–3334 (2014).

    Article  CAS  Google Scholar 

  46. Buchholz, F. L. & Peppas, N. A. Superabsorbent Polymers, vol. 573 (American Chemical Society, Washington, DC, 1994).

  47. Nogales, E. & Scheres, S. H. Cryo-EM: a unique tool for the visualization of macromolecular complexity. Mol. Cell 58, 677–689 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Bestul, A. J., Yu, Z., Unruh, J. R. & Jaspersen, S. L. Molecular model of fission yeast centrosome assembly determined by superresolution imaging. J. Cell Biol. 216, 2409–2424 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Mennella, V. et al. Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization. Nat. Cell Biol. 14, 1159–1168 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Gartenmann, L. et al. A combined 3D-SIM/SMLM approach allows centriole proteins to be localized with a precision of approximately 4–5 nm. Curr. Biol. 27, R1054–R1055 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Loschberger, A. et al. Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution. J. Cell Sci. 125, 570–575 (2012).

    Article  PubMed  CAS  Google Scholar 

  52. Loschberger, A., Franke, C., Krohne, G., van de Linde, S. & Sauer, M. Correlative super-resolution fluorescence and electron microscopy of the nuclear pore complex with molecular resolution. J. Cell Sci. 127, 4351–4355 (2014).

    Article  PubMed  CAS  Google Scholar 

  53. Szymborska, A. et al. Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging. Science 341, 655–658 (2013).

    Article  PubMed  CAS  Google Scholar 

  54. Broeken, J. et al. Resolution improvement by 3D particle averaging in localization microscopy. Methods Appl. Fluoresc. 3, 014003 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Van Engelenburg, S. B. et al. Distribution of ESCRT machinery at HIV assembly sites reveals virus scaffolding of ESCRT subunits. Science 343, 653–656 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Gray, R. D. et al. VirusMapper: open-source nanoscale mapping of viral architecture through super-resolution microscopy. Sci. Rep. 6, 29132 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Engerer, P., Fecher, C. & Misgeld, T. Super-resolution microscopy writ large. Nat. Biotechnol. 34, 928–930 (2016).

    Article  PubMed  CAS  Google Scholar 

  58. Jeffress, J. K. et al. The formation of the central element of the synaptonemal complex may occur by multiple mechanisms: the roles of the N- and C-terminal domains of the Drosophila C(3)G protein in mediating synapsis and recombination. Genetics 177, 2445–2456 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Page, S. L. et al. Corona is required for higher-order assembly of transverse filaments into full-length synaptonemal complex in Drosophila oocytes. PLoS Genet. 4, e1000194 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Hawley Lab for invaluable feedback on the manuscript, particularly A. Miller for figure preparation and proofreading, C. Lake for valuable discussion, and S. Hughes. We thank J. Lange for proofreading, and P. Ji and the histology core (Stowers Institute) for valuable discussion on chemistry and histotechniques. This work was supported by the Stowers Institute for Medical Research. R.S.H. is an American Cancer Society Research Professor.

Author information

Authors and Affiliations

Authors

Contributions

Y.W., Z.Y., and C.K.C. developed the ExM–SIM protocol; C.K.C. and R.S.H. designed the research project; N.T. and T.P. provided technical expertise and advice; J.R.U. and B.D.S. analyzed data and wrote analysis software; Y.W., Z.Y., C.K.C., J.R.U., B.D.S., and R.S.H. wrote the paper.

Corresponding authors

Correspondence to Yongfu Wang, Zulin Yu or R. Scott Hawley.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related link

Key reference using this protocol

1. Cahoon, C. K. et al. Proc. Natl. Acad. Sci. USA 114, E6857–E68E66 (2017) https://doi.org/10.1073/pnas.1705623114

Integrated supplementary information

Supplementary Figure 1 Quantification of expansion distortion.

The plot shows the average RMS distance error for all pairs of points as a function of distance in an overlaid SIM and expanded confocal image of C(3)G in Box 3 panels a–c (a) and of Corolla in Box 3 panels d–f (b). Both distances are in expanded units. The distance errors in each subregion were determined by cross-correlation analysis as opposed to feature comparison as in Chen et al.3. Note that given the sample manipulations in our protocol (for example: slicing, relabeling), this error represents both expansion distortion and changes in local labeling density.

Supplementary Figure 2 Screenshots of the single-particle averaging analysis.

Screenshots illustrating the details of steps (a) 65—color alignment, (b) 68—making an interpolated three-dimensional line profile, (c) 69—computational straightening of the SC along the Y axis, and (d) 75–76—Gaussian fitting.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yu, Z., Cahoon, C.K. et al. Combined expansion microscopy with structured illumination microscopy for analyzing protein complexes. Nat Protoc 13, 1869–1895 (2018). https://doi.org/10.1038/s41596-018-0023-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-018-0023-8

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing