Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pig lung transplant survival model

Abstract

Although lung transplant is a life-saving therapy for some patients, primary graft dysfunction (PGD) is a leading cause of mortality and morbidity soon after a transplant. Ischemia reperfusion injury is known to be one of the most critical factors in PGD development. PGD is by definition an acute lung injury syndrome that occurs during the first 3 d following lung transplantation. To successfully translate laboratory discoveries to clinical practice, a reliable and practical large animal model is critical. This protocol describes a surgical technique for swine lung transplantation and postoperative management for a further 3 d post transplant. The protocol includes the background and rationale, required supplies, and a detailed description of the donor operation, transplant surgery, postoperative care, and sacrifice surgery. A pig lung transplant model is reliably produced in which the recipients survive for 3 d post transplant. This 3-d survival model can be used by lung transplant researchers to assess the development of PGD and to test therapeutic strategies targeting PGD. In total, the protocol requires 5 h for the surgeries, plus ~2 h in total for the postoperative care.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Donor surgery.
Fig. 2: Recipient surgery.
Fig. 3: Post operative care.

References

  1. Hardy, J. D. The first lung transplant in man (1963) and the first heart transplant in man (1964). Transplant. Proc. 31, 25–29 (1999).

    Article  PubMed  CAS  Google Scholar 

  2. Demikhov, V. P. Transplantation of the heart, lungs and other organs. Eksp. Khir. Anesteziol. 14, 3–8 (1969).

    PubMed  CAS  Google Scholar 

  3. Hardin, C. A. & Kittle, C. F. Experiences with transplantation of the lung. Science 119, 97–98 (1954).

    Article  PubMed  CAS  Google Scholar 

  4. Cooper, J. D. et al. Technique of successful lung transplantation in humans. J. Thorac. Cardiovasc. Surg. 93, 173–181 (1987).

    PubMed  CAS  Google Scholar 

  5. de Perrot, M., Liu, M., Waddell, T. K. & Keshavjee, S. Ischemia-reperfusion-induced lung injury. Am. J. Respir. Crit. Care Med. 167, 490–511 (2003).

    Article  PubMed  Google Scholar 

  6. Christie, J. D. et al. Primary graft failure following lung transplantation. Chest 114, 51–60 (1998).

    Article  PubMed  CAS  Google Scholar 

  7. Christie, J. D. et al. Construct validity of the definition of primary graft dysfunction after lung transplantation. J. Heart Lung Transplant. 29, 1231–1239 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Christie, J. D. et al. Report of the ISHLT Working Group on Primary Lung Graft Dysfunction part II: definition. A consensus statement of the International Society for Heart and Lung Transplantation. J. Heart Lung Transplant. 24, 1454–1459 (2005).

    Article  PubMed  Google Scholar 

  9. Whitson, B. A. et al. Primary graft dysfunction and long-term pulmonary function after lung transplantation. J. Heart Lung Transplant. 26, 1004–1011 (2007).

    Article  PubMed  Google Scholar 

  10. Christie, J. D. et al. The effect of primary graft dysfunction on survival after lung transplantation. Am. J. Respir. Crit. Care Med. 171, 1312–1316 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bharat, A. et al. Immunological link between primary graft dysfunction and chronic lung allograft rejection. Ann. Thorac. Surg. 86, 189–195 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pierre, A. F. et al. Effect of complement inhibition with soluble complement receptor 1 on pig allotransplant lung function. Transplantation 66, 723–732 (1998).

    Article  PubMed  CAS  Google Scholar 

  13. Machuca, T. N. et al. Safety and efficacy of ex vivo donor lung adenoviral IL-10 gene therapy in a large animal lung transplant survival model. Hum. Gene Ther. 28, 757–765 (2017).

    Article  PubMed  CAS  Google Scholar 

  14. Iskender, I. et al. Human alpha1-antitrypsin improves early post-transplant lung function: pre-clinical studies in a pig lung transplant model. J. Heart Lung Transplant. 35, 913–921 (2016).

    Article  PubMed  Google Scholar 

  15. Martins, S. et al. Transbronchial administration of adenoviral-mediated interleukin-10 gene to the donor improves function in a pig lung transplant model. Gene Ther. 11, 1786–1796 (2004).

    Article  PubMed  CAS  Google Scholar 

  16. Yeung, J. C. et al. Ex vivo adenoviral vector gene delivery results in decreased vector-associated inflammation pre- and post-lung transplantation in the pig. Mol. Ther. 20, 1204–1211 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Karimi, A., Cobb, J. A., Staples, E. D., Baz, M. A. & Beaver, T. M. Technical pearls for swine lung transplantation. J. Surg. Res. 171, e107–111 (2011).

    Article  PubMed  Google Scholar 

  18. Aoyama, A. et al. Long-term lung transplantation in nonhuman primates. Am. J. Transplant. 15, 1415–1420 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Hertz, M. I., Jessurun, J., King, M. B., Savik, S. K. & Murray, J. J. Reproduction of the obliterative bronchiolitis lesion after heterotopic transplantation of mouse airways. Am. J. Pathol. 142, 1945–1951 (1993).

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Reichenspurner, H. et al. Obliterative airway disease after heterotopic tracheal xenotransplantation in a concordant rodent model: pathogenesis and treatment. Transplant. Proc. 28, 729–730 (1996).

    PubMed  CAS  Google Scholar 

  21. Reichenspurner, H. et al. Obliterative airway disease after heterotopic tracheal xenotransplantation: pathogenesis and prevention using new immunosuppressive agents. Transplantation 64, 373–383 (1997).

    Article  PubMed  CAS  Google Scholar 

  22. Liu, M. et al. Soluble transforming growth factor-beta type III receptor gene transfection inhibits fibrous airway obliteration in a rat model of Bronchiolitis obliterans. Am. J. Respir. Crit. Care Med. 165, 419–423 (2002).

    Article  PubMed  Google Scholar 

  23. Lama, V. N. et al. Models of lung transplant research: a consensus statement from the National Heart, Lung, and Blood Institute workshop. JCI Insight 2 https://doi.org/10.1172/jci.insight.93121 (2017).

  24. Lin, X. et al. Five-year update on the mouse model of orthotopic lung transplantation: scientific uses, tricks of the trade, and tips for success. J. Thorac. Dis. 4, 247–258 (2012).

    PubMed  PubMed Central  Google Scholar 

  25. Jungraithmayr, W. M., Korom, S., Hillinger, S. & Weder, W. A mouse model of orthotopic, single-lung transplantation. J. Thorac. Cardiovasc. Surg. 137, 486–491 (2009).

    Article  PubMed  Google Scholar 

  26. Jungraithmayr, W. et al. Inhibition of CD26/DPP IV attenuates ischemia/reperfusion injury in orthotopic mouse lung transplants: the pivotal role of vasoactive intestinal peptide. Peptides 31, 585–591 (2010).

    Article  PubMed  CAS  Google Scholar 

  27. Sato, M. et al. The role of intrapulmonary de novo lymphoid tissue in obliterative bronchiolitis after lung transplantation. J. Immunol. 182, 7307–7316 (2009).

    Article  PubMed  CAS  Google Scholar 

  28. Sato, M., Keshavjee, S. & Liu, M. Translational research: animal models of obliterative bronchiolitis after lung transplantation. Am. J. Transplant. 9, 1981–1987 (2009).

    Article  PubMed  CAS  Google Scholar 

  29. Gracon, A. S. & Wilkes, D. S. Lung transplantation: chronic allograft dysfunction and establishing immune tolerance. Hum. Immunol. 75, 887–894 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Martins, M. A. & Watkins, D. I. What is the predictive value of animal models for vaccine efficacy in humans? Rigorous simian immunodeficiency virus vaccine trials can be instructive. Cold Spring Harb. Perspect. Biol. 10 https://doi.org/10.1101/cshperspect.a029504 (2018).

  31. Whiteside, G. T., Adedoyin, A. & Leventhal, L. Predictive validity of animal pain models? A comparison of the pharmacokinetic-pharmacodynamic relationship for pain drugs in rats and humans. Neuropharmacology 54, 767–775 (2008).

    Article  PubMed  CAS  Google Scholar 

  32. Milani-Nejad, N. & Janssen, P. M. Small and large animal models in cardiac contraction research: advantages and disadvantages. Pharmacol. Ther. 141, 235–249 (2014).

    Article  PubMed  CAS  Google Scholar 

  33. Food and Drug Administration. Product Development Under the Animal Rule: Guidance for Industry (Food and Drug Administration, 2015).

  34. Judge, E. P. et al. Anatomy and bronchoscopy of the porcine lung. A model for translational respiratory medicine. Am. J. Respir. Cell Mol. Biol. 51, 334–343 (2014).

    Article  PubMed  CAS  Google Scholar 

  35. Yusen, R. D. et al. The Registry of the International Society for Heart and Lung Transplantation: Thirty-second Official Adult Lung and Heart-Lung Transplantation Report--2015; focus theme: early graft failure. J. Heart Lung Transplant. 34, 1264–1277 (2015).

    Article  PubMed  Google Scholar 

  36. Ferrari, R. S. & Andrade, C. F. Oxidative stress and lung ischemia-reperfusion injury. Oxid. Med. Cell. Longev. 2015, 590987 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Madariaga, M. L. et al. Effects of lung cotransplantation on cardiac allograft tolerance across a full major histocompatibility complex barrier in miniature swine. Am. J. Transplant. 16, 979–986 (2016).

    Article  PubMed  CAS  Google Scholar 

  38. Allan, J. S. et al. Modeling chronic lung allograft rejection in miniature swine. Transplantation 73, 447–453 (2002).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from the Canadian Institutes of Health Research (MOP-312227, MOP-119514, and PJT-148847) and an Ontario Research Fund-Research Excellence award (RE08-29).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed critical feedback to the development of the protocol. A.M. took the lead in performing the surgeries and writing the manuscript with the help of L.C. L.C., D.N., and M. Chen assisted with surgeries. J.T., J.Y., M. Cypel M.L., and S.K. were involved in planning and supervising the research.

Corresponding authors

Correspondence to Mingyao Liu or Shaf Keshavjee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Machuca, T.N., et al. Hum. Gene Ther. 28, 757–765 (2017) https://doi.org/10.1089/hum.2016.070

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mariscal, A., Caldarone, L., Tikkanen, J. et al. Pig lung transplant survival model. Nat Protoc 13, 1814–1828 (2018). https://doi.org/10.1038/s41596-018-0019-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-018-0019-4

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing