Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A general, electrocatalytic approach to the synthesis of vicinal diamines

Abstract

This protocol describes an electrochemical synthesis of 1,2-diazides from alkenes. Organic azides are highly versatile intermediates for synthetic chemistry, materials, and biological applications. 1,2-Diazides are commonly reduced to form 1,2-diamines, which are prevalent structural motifs in bioactive natural products, therapeutic agents, and molecular catalysts. The electrochemical formation of 1,2-diazides involves the anodic generation of an azidyl radical from sodium azide, followed by two successive additions of this N-centered radical to the alkene, and is assisted by a Mn catalyst. The electrosynthesis of 1,2-diazides can be carried out using various experimental setups comprising custom-made or commercially available reaction vessels and a direct-current power supply. Readily accessible electrode materials can be used, including carbon (made from reticulated vitreous carbon and pencil lead), nickel foam, and platinum foil. This protocol is also demonstrated using ElectraSyn, a standardized electrochemistry kit. Compared with conventional synthetic approaches, electrochemistry allows for the precise control of the anodic potential input, eliminates the need for stoichiometric and often indiscriminate oxidants, and minimizes the generation of wasteful byproducts. As such, our electrocatalytic synthesis exhibits various advantages over existing methods for alkene diamination, including sustainability, operational simplicity, substrate generality, and exceptional functional-group compatibility. The resultant 1,2-diazides can be smoothly reduced to 1,2-diamines in a single step with high chemoselectivity. To exemplify this, we include a procedure for catalytic hydrogenation using palladium on carbon. This protocol, therefore, constitutes a general approach to accessing 1,2-diazides and 1,2-diamines from alkenes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Importance of 1,2-diamines in synthetic and medicinal chemistry
Fig. 2: Electrocatalytic diazidation of alkenes.
Fig. 3: Electrolysis setup for 0.2 mmol scale reactions.
Fig. 4: Electrolysis setup for 3 mmol scale reactions.
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bariwal, J. & Van der Eycken, E. C–N bond forming cross-coupling reactions: an overview. Chem. Soc. Rev. 42, 9283–9303 (2013).

    Article  PubMed  CAS  Google Scholar 

  2. McGrath, N. A., Brichacek, M. & Njardarson, J. T. A graphical journey of innovative organic architectures that have improved our lives. J. Chem. Ed. 87, 1348–1349 (2010).

    Google Scholar 

  3. Lucet, D., Le Gall, T. & Mioskowski, C. The chemistry of vicinal diamines. Angew. Chem. Int. Ed. Engl. 37, 2580–2627 (1998).

    Article  PubMed  CAS  Google Scholar 

  4. Cardona, F. & Goti, A. Metal-catalysed 1,2-diamination reactions. Nat. Chem. 1, 269–275 (2009).

    Article  PubMed  CAS  Google Scholar 

  5. Moeller, K. D. Synthetic applications of anodic electrochemistry. Tetrahedron 56, 9527–9554 (2000).

    Article  CAS  Google Scholar 

  6. Yoshida, J., Kataoka, K., Horcajada, R. & Nagaki, A. Modern strategies in electroorganic synthesis. Chem. Rev. 108, 2265–2299 (2008).

    Article  PubMed  CAS  Google Scholar 

  7. Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

  8. Morofuji, T., Shimizu, A. & Yoshida, J. Heterocyclization approach for electrooxidative coupling of functional primary alkylamines with aromatics. J. Am. Chem. Soc. 137, 9816–9819 (2015).

    Article  PubMed  CAS  Google Scholar 

  9. Siu, T. & Yudin, A. K. Practical olefin aziridination with a broad substrate scope. J. Am. Chem. Soc. 124, 530–531 (2002).

    Article  PubMed  CAS  Google Scholar 

  10. Fu, N., Sauer, G. S., Saha, A., Loo, A. & Lin, S. Metal-catalyzed electrochemical diazidation of alkenes. Science 357, 575–579 (2017).

    Article  PubMed  CAS  Google Scholar 

  11. Francke, R. & Little, R. D. Redox catalysis in organic electrosynthesis: basic principles and recent developments. Chem. Soc. Rev. 43, 2492–2521 (2014).

    Article  PubMed  CAS  Google Scholar 

  12. Zhang, W. & Jacobsen, E. N. Preparation of trans-1,2-diamino-1,2-dimethylcyclohexane via highly stereoselective olefin oxidation by dinitrogen tetroxide. Tetrahedron Lett. 32, 1711–1714 (1991).

    Article  CAS  Google Scholar 

  13. Parry, J. B., Fu, N. & Lin, S. Electrocatalytic difunctionalization of olefins as a general approach to the synthesis of vicinal diamines. Synlett 29, 257–265 (2018).

    Article  CAS  Google Scholar 

  14. Minisci, F. Free-radical additions to olefins in the presence of redox systems. Acc. Chem. Res. 8, 165–171 (1975).

    Article  CAS  Google Scholar 

  15. Olson, D.-E., Su, J. Y., Roberts, D. A. & Du Bois, J. Vicinal diamination of alkenes under Rh-catalysis. J. Am. Chem. Soc. 136, 13506–13509 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Muñiz, K., Barreiro, L., Romero, R. M. & Martínez, C. Catalytic asymmetric diamination of styrenes. J. Am. Chem. Soc. 139, 4354–4357 (2017).

    Article  PubMed  CAS  Google Scholar 

  17. Zhang, B. & Studer, A. Copper-catalyzed intermolecular aminoazidation of alkenes. Org. Lett. 16, 1790–1793 (2014).

    Article  PubMed  CAS  Google Scholar 

  18. Zhao, B., Yuan, W., Du, H. & Shi, Y. Cu(I)-catalyzed intermolecular diamination of activated terminal olefins. Org. Lett. 9, 4943–4945 (2007).

    Article  PubMed  CAS  Google Scholar 

  19. Yuan, Y.-A., Lu, D.-F., Chen, Y.-R. & Xu, H. Iron-catalyzed direct diazidation for a broad range of olefins. Angew. Chem. Int. Ed. Engl. 55, 534–538 (2016).

    Article  PubMed  CAS  Google Scholar 

  20. Li, G., Wei, H. X., Kim, S. H. & Carducci, M. A novel electrophilic diamination reaction of alkenes. Angew. Chem. Int. Ed. Engl. 40, 4277–4280 (2001).

    Article  PubMed  CAS  Google Scholar 

  21. Snider, B. B. & Lin, H. An improved procedure for the conversion of alkenes and glycals to 1,2-diazides using Mn(OAc)3•2H2O in acetonitrile containing trifluoroacetic acid. Synth. Commun. 28, 1913–1922 (1998).

    Article  CAS  Google Scholar 

  22. Fumagalli, G., Rabet, P. T. G., Boyd, S. & Greaney, M. F. Three-component azidation of styrene-type double bonds: light-switchable behavior of a copper photoredox catalyst. Angew. Chem. Int. Ed. Engl. 54, 11481–11484 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. For an example, see: Pikul, S. & Corey, E. J. (1R,2R)-(+)- and (1S,2S)-(−)-1,2-diphenyl-1,2-ethylenediamine. Org. Synth. 71, 22 (1993).

    Article  CAS  Google Scholar 

  24. Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemistry: calling all engineers. Angew. Chem. Int. Ed. Engl. 57, 4149–4155 (2018).

  25. Zhu, H.-T., Arosio, L., Villa, R., Nebuloni, M. & Xu, H. Process safety assessment of the iron-catalyzed direct olefin diazidation for the expedient synthesis of vicinal primary diamines. Org. Process Res. Dev. 21, 2068–2072 (2017).

    Article  PubMed  CAS  Google Scholar 

  26. Fu, N., Sauer, G. S. & Lin, S. Electrocatalytic dichlorination of alkenes using nucleophilic chlorine sources. J. Am. Chem. Soc. 139, 15548–15553 (2017).

    Article  PubMed  CAS  Google Scholar 

  27. Ye, K.-Y. et al. Anodically coupled electrolysis for the heterodifunctionalization of alkenes. J. Am. Chem. Soc. 140, 2438–2441 (2018).

    Article  PubMed  CAS  Google Scholar 

  28. Xu, H.-C., Campbell, J. M. & Moeller, K. D. Cyclization reactions of anode-generated amidyl radicals. J. Org. Chem. 79, 379–391 (2014).

    Article  PubMed  CAS  Google Scholar 

  29. Finney, E. E., Ogawa, K. A. & Boydston, A. J. Organocatalyzed anodic oxidation of aldehydes. J. Am. Chem. Soc. 134, 12374–12377 (2012).

    Article  PubMed  CAS  Google Scholar 

  30. Zhu, L. et al. Electrocatalytic generation of amidyl radicals for olefin hydroamidation: use of solvent effects to enable anilide oxidation. Angew. Chem. Int. Ed. Engl. 55, 2226–2229 (2016).

    Article  PubMed  CAS  Google Scholar 

  31. Horn, E. J. et al. Scalable and sustainable electrochemical allylic C–H oxidation. Nature 533, 71–81 (2016).

    Article  CAS  Google Scholar 

  32. Kawamata, Y. et al. Scalable, electrochemical oxidation of unactivated C–H bonds. J. Am. Chem. Soc. 139, 7448–7451 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Gütz, C., Klöckner, G. & Waldvogel, S. R. Electrochemical screening for electroorganic synthesis. Org. Process Res. Dev. 20, 26–32 (2016).

    Article  CAS  Google Scholar 

  34. Wallace, K. J. et al. Preparation of 1,3,5-tris(aminomethyl)-2,4,6-triethylbenzene from two versatile 1,3,5-tri(halosubstituted) 2,4,6-triethylbenzene derivatives. Synthesis 12, 2080–2083 (2005).

    Google Scholar 

  35. Bayley, H., Standring, D. N. & Knowles, J. R. Propane-1,3-dithiol: a selective reagent for the efficient reduction of alkyl and aryl azides to amines. Tetrahedron Lett. 19, 3633–3634 (1978).

    Article  Google Scholar 

  36. Chen, Y., Kamlet, A. S., Steinman, J. B. & Liu, D. R. A biomolecule-compatible visible-light-induced azide reduction from a DNA-encoded reaction-discovery system. Nat. Chem. 3, 146–153 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Rao, H. S. P. & Siva, P. Facile reduction of azides with sodium borohydride/copper (II) sulphate system. Synth. Commun. 24, 549–555 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was provided by Cornell University and the Atkinson Center for a Sustainable Future. S.L. is thankful to the National Science Foundation (NSF) for a CAREER Award (CHE-1751839). This study made use of the Cornell Center for Materials Research Shared Facilities supported by NSF MRSEC (DMR-1719875) and an NMR facility supported by the NSF (CHE-1531632). G.S.S. is grateful for an NSF Graduate Fellowship (DGE-1650441). We thank P. Baran and IKA for their generous gift of ElectraSyn.

Author information

Authors and Affiliations

Authors

Contributions

N.F. and S.L. designed the experiments. N.F. and G.S.S. carried out the experiments. N.F., G.S.S., and S.L. wrote the manuscript.

Corresponding author

Correspondence to Song Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related Links

Key references using this protocol

1. Fu, N., Sauer, G.S., Saha, A., Loo, A. & Lin, S. Science, 357, 575–579 (2017). https://doi.org/10.1126/science.aan6206

2. Fu, N., Sauer, G.S. & Lin, S. J. Am. Chem. Soc. 139, 15548–15553 (2017). https://doi.org/10.1021/jacs.7b09388

3. Ye, K.-Y., Pombar, G., Fu, N., Sauer, G.S., Keresztes, I. & Lin, S. J. Am. Chem. Soc. 140, 2438–2441 (2018). https://doi.org/10.1021/jacs.7b13387

Integrated supplementary information

Supplementary Figure 1.

Preparation of the nickel cathode and carbon anode for electrocatalytic diazidation of alkenes

Supplementary Figure 2. IKA EletraSyn setup: electrode assemblies.

Left: Ni foam and RVC electrodes and the electrode holders; Right: Ni foam and RVC electrode assemblies as described in Box 1

Supplementary Figure 3. IKA EletraSyn setup: parts for vial assembly.

Top: ElectraSyn vial cap; Bottom left: ElectraSyn vial (10 mL) with Teflon tape wrapped around the thread. Bottom middle: RVC electrode assembly. Bottom right: Ni foam electrode assembly

Supplementary Figure 4.

IKA EletraSyn setup: vial assembly

Supplementary Figure 5.

IKA EletraSyn setup: reactor assembly

Supplementary Figure 6.

Custom two-neck glass tube for small-scale electrolysis with standard no. 15 internal thread and 14/20 joint

Supplementary Figure 7. Custom Teflon cap components.

Left: Electrical feedthrough with 2 mm sockets created as described in Box 2. Right: Teflon cap as created in Box 2, including a #15 Teflon bushing, two electrical feedthroughs, and an O-ring; viewed from the side

Supplementary Figure 8. Custom Teflon cap components.

Left: Electrical feedthrough created as described in Box 2. Right: Teflon cap as created in Box 2; viewed from the bottom

Supplementary Figure 9. Custom Teflon cap components.

Left: Disassembled Teflon cap showing the hole drilled in the Teflon. Right: Electrical feedthrough created as described in Box 2

Supplementary Figure 10.

TGA data for (3,4-diazidobutyl)benzene (3)

Supplementary Figure 11.

TGA data for trans-2,3-diazido-1-tosylindoline (4)

Supplementary Figure 12.

TGA data for methyl 2,3-diazido-3-methyl-2-phenylbutanoate (7)

Supplementary Figure 13.

TGA data for 4-(1,2-diazidoethyl)benzaldehyde (9)

Supplementary Figure 14.

TGA data for 1,2-diazidoethyl ferrocene (13)

Supplementary Figure 15.

TGA data for sodium azide

Supplementary Figure 16.

1H NMR spectrum for a mixture of (2,3-diazidopropyl)benzene (16) and (1,2,3-triazidopropyl)benzene (17)

Supplementary Figure 17.

13C NMR spectrum for a mixture of (2,3-diazidopropyl)benzene (16) and (1,2,3-triazidopropyl)benzene (17)

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–17 and Supplementary Methods

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, N., Sauer, G.S. & Lin, S. A general, electrocatalytic approach to the synthesis of vicinal diamines. Nat Protoc 13, 1725–1743 (2018). https://doi.org/10.1038/s41596-018-0010-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-018-0010-0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing