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Structural basis for excitatory neuropeptide 
signaling

Valeria Kalienkova    1,4, Mowgli Dandamudi2, Cristina Paulino    1,3  & 
Timothy Lynagh    2 

Rapid signaling between neurons is mediated by ligand-gated ion channels, 
cell-surface proteins with an extracellular ligand-binding domain and a 
membrane-spanning ion channel domain. The degenerin/epithelial sodium 
channel (DEG/ENaC) superfamily is diverse in terms of its gating stimuli, 
with some DEG/ENaCs gated by neuropeptides, and others gated by pH, 
mechanical force or enzymatic activity. The mechanism by which ligands 
bind to and activate DEG/ENaCs is poorly understood. Here we dissected the 
structural basis for neuropeptide-gated activity of a neuropeptide-gated 
DEG/ENaC, FMRFamide-gated sodium channel 1 (FaNaC1) from the annelid 
worm Malacoceros fuliginosus, using cryo-electron microscopy. Structures 
of FaNaC1 in the ligand-free resting state and in several ligand-bound 
states reveal the ligand-binding site and capture the ligand-induced 
conformational changes of channel gating, which we verified with 
complementary mutagenesis experiments. Our results illuminate channel 
gating in DEG/ENaCs and offer a structural template for experimental 
dissection of channel pharmacology and ion conduction.

Ligand-gated ion channels (LGICs) are cell membrane proteins that 
convert extracellular chemical signals into transmembrane ionic 
current, thus contributing to rapid inter-cellular signaling and 
chemo-sensation1,2. Major LGIC superfamilies, such as nicotinic 
receptors and ionotropic glutamate receptors, are found in prokary-
otes and eukaryotes, and are gated by small amino acid or biogenic 
amine ligands1,3. This contrasts with a third LGIC superfamily that is 
more specific to animals and close relatives, the trimeric degenerin/
epithelial sodium channels (DEG/ENaCs)2,4–7. Despite having arisen 
relatively recently, DEG/ENaCs are diverse in terms of gating stimuli, 
as the superfamily includes constitutively active channels, pH-gated 
channels, osmolarity-gated channels, mechanically gated channels and 
neuropeptide-gated channels, among others2,4. DEG/ENaCs are often 
expressed in neurons, where their gating causes depolarization due 
to selective cation permeability8,9, but are also expressed in numerous 
other cells, such as muscle and epithelia2,10.

The fact that such diverse stimuli activate DEG/ENaCs raises 
several questions, ranging from evolutionary to physiological to 

biophysical. For example, did sensitivity to different ligands emerge 
independently and on demand in different animal lineages? And 
from a biophysical perspective, is there a gating machinery unique 
to the DEG/ENaC architecture that converts very different biophysi-
cal stimuli into similar conformational change at the channel gate? 
So far, our knowledge of DEG/ENaC channel architecture and gating 
derives mostly from X-ray or cryo-electron microscopy (cryo-EM) 
data11,12 and complementary biophysical experiments13 on verte-
brate acid-sensing ion channels (ASICs), a family of proton-gated  
DEG/ENaCs. These, together with recent structures of the ENaC extra-
cellular domain, show that DEG/ENaCs are assembled by three homolo-
gous subunits, each with a channel-forming transmembrane domain 
and a large extracellular domain, in threefold symmetry around a 
central pore14,15. As inferred from high-resolution structures of chicken 
ASIC1, channel gating involves the following conformational changes 
in each subunit. The protonation of numerous side chains leads to 
the collapse of a large part of the extracellular domain, whereby the 
mid-peripheral domain (‘thumb’) is drawn upward toward the upper, 
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‘TM2b’ α-helical segments within each subunit (Fig. 1e and Extended 
Data Figs. 1–3). Consequently, TM2a from one subunit essentially forms 
a membrane-spanning helix with TM2b from the adjacent subunit  
(Fig. 1e). The upper, middle and lower segments of the channel pore 
are lined by TM2a, the GIS motif and a re-entrant loop from the short 
pre-TM1 N-terminal segment, respectively (Fig. 1e). Thus, the channel 
architecture of FaNaC1 is similar to that of its distant DEG/ENaC cousin, 
ASIC1 (refs. 11,25), suggesting that this architecture is probably adopted 
by most channels of the DEG/ENaC superfamily. We also observe that 
the hydrophobic periphery of the channel is thinner than the mem-
brane bilayer, such that the outer leaflet of the membrane bends to 
make way for hydrophilic, lateral fenestrations between adjacent subu-
nits, possibly creating a path for water and ions into the channel pore 
(Extended Data Fig. 4).

Ligand-binding site
In the FaNaC1/FMRFa structure, we observed a discrete cryo-EM density 
in a small pocket at the upper corner of each subunit, which fits a single 
FMRFa molecule (Fig. 2a and Extended Data Fig. 2). The FMRFa-binding 
pocket is formed by α-helical segments α1–α3a (residues V87 to F144), 
the β6–β7 loop of the same subunit (residues D234 to G241), and partly 
by α6 from the adjacent subunit (G423–K428, Fig. 2a). The basis for 
ligand recognition appears to be mostly hydrophobic interactions. 
The FMRFa N-terminal phenylalanine residue (F1) is positioned near 
the entrance to the pocket and the M2 side chain orients downward 
between α2-F129, β6–β7 loop-I236 and M238, and α6-F431. FMRFa 
R3 orients upward: the density for the guanidino moiety in our map 
is relatively weak, but the modeled side chain is 4–6 Å from polar 
side chains α1-D101 and β6–β7 loop-E235 and R237. Finally, FMRFa 
F4 and C-terminal amide sit deep in the pocket, with the F4 side chain 
surrounded as closely as 3.5–4.6 Å by the hydrophobic side chains 
of α1-F97, P103, α2-V122, A126 and F129, and β6–β7 loop-P240. Addi-
tionally, FMRFa M2 main chain carbonyl oxygens are 2.5–3.1 Å from 
the FaNaC1 α2-Q133 amide side chain (Fig. 2a), indicative of a potential 
polar interaction.

To establish the functional importance of such interactions, we 
compared FMRFa potency at wild-type (WT) and 18 mutant chan-
nels with amino acid substitutions at selected positions, via heter-
ologous expression in Xenopus laevis oocytes and two-electrode 
voltage clamp (Fig. 2b,c). We measured potency by establishing  
the half-maximal effective concentration (EC50) of FMRFa during  
the increasing part of the concentration–response relationship, 
excluding a decrease in current amplitudes with higher FMRFa con-
centrations (Fig. 2b). Additional experiments suggested this decrease 
is due to slow recovery from desensitization with high concentrations 
of the ligand (Extended Data Fig. 5a,b). As this decrease also occurs 
at positive membrane potentials and with other, uncharged peptide 
analogs (Extended Data Fig. 5c,d), we think it is not a sign of channel 
block by high concentrations FMRFa, which has been suggested for 
mollusk FaNaCs26.

Mutations in the α2 helix had the largest effects on FMRFa potency, 
with F129L and F129A mutations decreasing potency 10- to 20-fold 
(EC50: WT, 850 ± 270 nM; F129L, 9 ± 3 μM, F129A, 18 ± 8 μM; each n = 4) 
and F129Q decreasing potency ~100-fold (Fig. 2b,c), suggesting that 
van der Waals interactions between FaNaC1 F129 and FMRFa M2 and F4 
contribute substantially to FMRFa binding. Whereas V122F and V122Q 
mutations had no effect on FMRFa potency, V122A caused a 20-fold 
increase in FMRFa potency (Fig. 2b,c; EC50 40 ± 10 nM, n = 4). The puta-
tive polar interactions we probed via mutagenesis make, at most, 
relatively subtle contributions to FMRFa binding. For example, Q133N 
and Q133L mutations, essentially retracting or removing a hydrogen 
bond partner from the FMRFa main chain, and D101A/E235A, removing 
two oppositely charged binding partners of the FMRFa R3 side chain, 
caused two- to fourfold decreases in potency (Fig. 2c). Finally, on the 
inner wall of the binding pocket, M238 and F431 mutations also had 

‘finger’ domain; concomitantly, β-strands of the low-peripheral ‘palm’ 
and ‘wrist’ domains move outward, pulling channel-forming α-helices 
peripherally to open the channel12,14.

It is unknown whether protons and larger, more canonical 
transmitters such as neuropeptides induce the same biophysical 
mechanism of channel gating in cognate DEG/ENaCs. The relation-
ship between neuropeptide-gated and other DEG/ENaCs is also inter-
esting from an evolutionary perspective, as neuropeptide-based, 
paracrine signaling systems potentially predated and gave rise to 
more modern synaptic systems16,17, and neuropeptide-gated DEG/
ENaCs occur in distinct animal types that diverged a long time 
ago18,19. This raises the possibility that neuropeptide-gated chan-
nels constitute one of the earliest occurring DEG/ENaCs and that 
understanding their ligand-induced gating may offer broad insights 
into mechanisms of DEG/ENaC function. Two distinct families of 
neuropeptide-gated DEG/ENaCs have been described so far. These 
include, from radially symmetric hydrozoans, the hetero-trimeric 
pyroQWLGGRFamide-gated Na+ channels (HyNaCs)20, and from 
bilaterally symmetric mollusks and annelids, the homo-trimeric 
FMRFamide-gated Na+ channels (FaNaCs)19,21. The short neuropep-
tide FMRFamide (H–Phe–Met–Arg–Phe–NH2, ‘FMRFa’) is of particular 
importance in bilaterian animals, as its broad neural expression makes 
it a common marker of the nervous system in numerous model inver-
tebrates, in which it mediates signaling via FaNaCs and/or G-protein- 
coupled receptors22.

In this Article, to uncover the structural basis for excitatory neu-
ropeptide activity and establish principles of ligand recognition and 
channel gating in the DEG/ENaC superfamily, we have investigated 
the structure of FaNaC1, an FMRFa-gated DEG/ENaC from the annelid 
Malacoceros fuliginosus, using cryo-EM. We solved high-resolution 
structures of FaNaC1 alone, with full agonist FMRFa, with partial agonist 
ASSFVRIa, and with both FMRFa and pore-blocker diminazene, identify-
ing the ligand-binding site and elucidating the conformational changes 
induced by ligand binding. Together with complementary mutagenesis 
and electrophysiological experiments, these results establish ligand 
recognition and channel gating mechanisms and offer a structural 
template for the experimental dissection of function throughout the 
DEG/ENaC channel superfamily.

Results
FaNaC structural architecture
To investigate the structure of neuropeptide-gated DEG/ENaC 
channels, we utilized FaNaC1 from the annelid Malacoceros fuligi-
nosus21, a channel with typical FMRFa-gated Na+-selective currents  
(Fig. 1a), that expressed well in preliminary screening. We transduced 
human embryonic kidney 293S (HEK293S) cells, purified FaNaC1, and 
incorporated it into lipid nanodiscs for subsequent cryo-EM study. 
Preparations of FaNaC1 alone and with FMRFa (30 μM) yielded 3D 
reconstructions with a global resolution of 2.7 and 2.5 Å, respec-
tively (Fig. 1b,c, Table 1 and Extended Data Figs. 1 and 2). For both 
structures, density could be unambiguously assigned to amino acid 
sequence based on mostly continuous main chain density and numer-
ous distinctive side chain densities (Extended Data Figs. 1 and 2). The 
63-amino-acid C-terminal tail was not resolved. This domain is highly 
variable across DEG/ENaCs, and experiments with ASICs suggest it is 
flexible and largely dispensable14,23,24.

The structures confirm that FaNaCs are trimeric like other  
DEG/ENaCs14,15, with three subunits forming a central channel pore  
(Fig. 1b,c). Each subunit comprises a minimal N terminus and a nonre-
solved 63-amino acid C terminus facing the intracellular side, two trans-
membrane segments (TM1 and TM2), and a large extracellular domain 
(Fig. 1d,e). The extracellular domain can be divided into palm, thumb, 
finger and knuckle domains similar to those previously described for 
ASIC14 and ENaC15 (Fig. 1e). TM2 is unwound at a GIS motif in the mid-
dle of the membrane, yielding discontinuous upper ‘TM2a’ and lower 
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little if any effect on FMRFa potency (Fig. 2c). Thus, FMRFa binding 
seems to rely mostly on hydrophobic interactions with side chains of 
the α2 helix.

We further validated the FMRFa binding mode in our structures by 
testing the potency of analogous peptides differing from FMRFa only 
at the F1, R3 or F4 position. We replaced R3 with citrulline, isosteric 
but neutral, or glutamine, shorter and neutral, yielding FMρFa and 
FMQFa, respectively. Compared to FMRFa, FMρFa was equally potent 
(EC50 690 ± nM, n = 4) and FMQFa was only fivefold less potent (EC50 
4.5 ± 2 μM, n = 4, Fig. 2d). Thus, polar interactions between FMRFa R3 

and FaNaC1 D101/E235 are relatively dispensable and FMRFa R3, sitting 
at the upper/outer part of the binding site, contributes little to potency. 
Removing the N-terminal F1 side chain also had relatively little effect, 
with AMRFa showing slightly increased potency compared to FMRFa 
(EC50 300 ± 150 nM, n = 3). In contrast, removing the C-terminal F4 
side chain drastically reduced potency, with FMRAa barely activating 
detectable currents at 100 μM (Fig. 2d and Extended Data Fig. 5d). This 
supports our structural results and shows that potency derives primar-
ily from FMRFa F4, and potentially M2, engaging FaNaC1 hydrophobic 
side chains.
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Fig. 1 | Malacoceros fuliginosus FaNaC1 architecture. a, Top, example two-
electrode voltage clamp current in a FaNaC1-expressing oocyte in response 
to FMRFa (application indicated by black bar). Middle, mean concentration-
dependent FMRFa-gated current amplitudes normalized to maximum 
(mean ± s.e.m., n = 4 oocytes). Bottom, FMRFa-gated (3 μM) current amplitude at 
different oocyte membrane voltages in extracellular Na+- or K+-based solutions. 
b,c, Cryo-EM density maps of FaNaC1 (subunits in blues) (b) and FaNaC1/FMRFa  

(subunits in purples, FMRFa in yellow) (c), viewed from the extracellular 
side (top) and from within the lipid bilayer (bottom). Lines indicate bilayer. 
d, Schematic of major secondary structure elements. α-helices, dark blue; 
β-strands, light blue. e, FaNaC1 model highlighting one subunit, colored as  
in d. Ala2, amino acid residue immediately following starting methionine.  
CTD, C-terminal tail, not resolved; TM2a#, adjacent subunit.
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Divergence of FaNaCs from other DEG/ENaCs
We questioned the divergence of neuropeptide-gated FaNaCs from 
other DEG/ENaCs by examining this pocket in high-resolution struc-
tures of vertebrate ENaC and ASIC. Although α6 lies in a similar posi-
tion in each channel, α1–α3 arrangement is vastly different in FaNaC1, 
ENaC and ASIC (Extended Data Fig. 6). Consequently, the FMRFa site is 

essentially obscured by an α-helix in ENaC and by a loop in ASIC. This 
suggests that the FMRFa-binding pocket is unique to the FaNaC family, 
and the enhancement of proton-gated currents that FMRFa elicits in 
ASICs27 probably derives from binding to elsewhere on the channel, 
consistent with the central, extracellular vestibule peptide-binding 
site proposed by others for ASICs28,29.

Table 1 | Cryo-EM data collection, refinement and validation statistics

Apo (EMDB-16982),  
(PDB 8ON8)

FMRFa (EMDB-16981),  
(PDB 8ON7)

ASSFVRIa (EMDB-16983), 
(PDB 8ON9)

FMRFa/dim. (EMDB-16984), 
(PDB 8ONA)

Data collection and processing

Magnification 49,407 49,407 49,407 49,407

Voltage (kV) 200 200 200 200

Electron exposure (e− Å−2) 47.47 50.11 47.40 47.20

Defocus range (μm) −0.3 to −2.0 −0.3 to −2.0 −0.3 to −2.0 −0.3 to −2.0

Pixel size (Å) 1.022 1.022 1.022 1.022

Symmetry imposed C3 C3 C3 C3

Initial particle images (no.) 2,659,492 3,235,905 4,662,322 3,893,627

Final particle images (no.) 376,869 458,934 477,006 137,558

Map resolution (Å)

 FSC threshold 0.143 2.67 2.52 2.39 2.96

Map resolution range (Å) 2.6–3.5 2.4–3.6 2.3–3.5 2.9–3.8

Refinement

Initial model used (PDB code) 8ON7 AlphaFold 8ON7 8ON7

Model resolution (Å)

 FSC threshold 0.143 2.4 2.2 2.2 2.7

Model resolution range (Å) 2.4–3.5 2.2–3.6 2.2–3.5 2.7–3.8

Map sharpening B factor (Å2) N/A N/A N/A N/A

Q-score 0.49 0.55 0.54 0.50

Model composition

 Nonhydrogen atoms 12,891 13,032 13,014 12,900

 Protein residues 1,572 1,587 1,587 1,581

 Ligands 21 24 24 18

B factors (Å2)

 Protein 123.38 104.22 107.97 123.56

 Ligand 153.47 134.47 142.07 143.51

Root mean square deviations

 Bond lengths (Å) 0.003 0.003 0.004 0.004

 Bond angles (°) 0.630 0.687 0.725 0.720

Validation

 MolProbity score 1.06 1.2 1.12 1.27

 Clashscore 3.01 3.48 3.29 3.79

 Poor rotamers (%) 0.2 0.2 0.2 0.6

Rama Z

 Whole 1.34 1.48 1.48 0.59

 Helix 1.25 1.27 1.49 0.16

 Sheet 1.62 1.7 1.74 1.09

 Loop 0.24 0.51 0.15 0.59

Ramachandran plot

 Favored (%) 98.08 97.71 98.6 97.5

 Allowed (%) 1.92 2.29 1.4 2.5

 Disallowed (%) 0 0 0 0

N/A, not applicable; FSC, Fourier shell correlation.

http://www.nature.com/nsmb
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More surprisingly, we notice substantial amino acid sequence 
divergence in the finger domain even within the FaNaC family. Although 
α2-V122 is arguably somewhat conserved in various FaNaCs (valine in 
FaNaC1; valine, threonine or isoleucine in most other FaNaCs), other 
α1, α2 and α3 residues are difficult to align, even including α2-F129, 
the most influential residue for FMRFa potency in our experiments 
(Extended Data Fig. 7). Despite such different sequences here, anne-
lid and mollusk FaNaCs arrive at an architecturally similar FMRFa 
binding site, as revealed by the comparative analysis of our struc-
tures and recently published structures of a FaNaC from the mollusk 
Aplysia californica30. Finger domains of both Malacoceros FaNaC1 
and Aplysia FaNaC comprise relatively vertical α1 helices, horizon-
tal α2 and α3a-b helices, and the β6–β7 loop, next to a horizontal α6  
(or equivalent α8) helix from the adjacent subunit (Extended Data 
Fig. 7a). Although FMRFa binds in the same site in both channels, the 
peptide sits ‘horizontally’ in Malacoceros FaNaC1, with F4 orienting 
deeply in the pocket toward α2-V122 (Fig. 2a), but ‘vertically’ in Aplysia 
FaNaC, with F1 oriented most deeply into the pocket toward α3b-F188 
(Extended Data Fig. 7a)30.

Contributions to FMRFa activity by finger and palm domains
We had previously proposed an FMRFa-binding site ~20 Å away from 
this site, at the interface of adjacent subunits’ β-ball and palm domains 
(orange in Fig. 3a and Extended Data Fig. 7) based on amino acid 
sequence analysis and severe effects of mutations in this site in several 
FaNaCs21. Our high-resolution maps seem to disprove that, motivating 
us to experimentally compare the finger site and palm/β-ball site. To this 
end, we compared the effects of modification of introduced cysteine 
residues in both of the sites by 2-(trimethylammonium)ethyl]meth-
anethiosulfonate (MTSET), offering a readout of steric modification 
of the sites in ‘real time’. In the finger domain, MTSET modification of 
α1-F97C, β6/β7-M238C and α2-F129C reduced FMRFa-gated current 
amplitude to approximately half in each case (Fig. 3a,b). In the palm 
domain, MTSET modification reduced β9-S282C currents to about half 

but had no effect on the β11-N475C mutant (Fig. 3a,b). This shows that 
both sites can be modulated by MTSET.

Differences between the sites emerged when we compared the 
effects of MTSET on FMRFa potency (Fig. 3c,d). MTSET modulation 
decreased FMRFa potency via each of the finger domain cysteine resi-
dues, shifting EC50 values from 250 ± 80 nM to 4 ± 2 μM at F97C, 5 ± 1 μM 
to >10 μM at F129C, and 140 ± 70 nM to 580 ± 290 nM at M238C (each 
n = 3, Fig. 3c). In contrast, FMRFa EC50 values were either unchanged 
or slightly decreased at palm domain S282C (360 ± 100 nM and 
170 ± 40 nM) and N475C (230 ± 110 nM and 140 ± 70 nM, each n = 3, 
Fig. 3d). Thus, the real-time addition of bulk to the finger domain 
site decreases FMRF-gated currents because of a decrease in FMRFa 
potency, presumably by impairing FMRFa binding. In contrast, addition 
of bulk to the palm/β-ball site impairs FMRFa-gated currents without a 
decrease in potency, presumably by rendering many of the receptors 
on the oocyte surface inactive. This is consistent with the total loss of 
currents in annelid and mollusk FaNaCs carrying mutations at various 
sites in the interfacial palm/β-ball site21.

Partial agonists bind via a similar mechanism to FMRFa
Several other neuropeptides gate certain FaNaCs with lower potency 
and efficacy than FMRFa, including FVRIamides at annelid FaNaCs and 
FLRFa at mollusk FaNaCs19,21,31,32. We examined the structural basis of 
this partial agonism by solving the cryo-EM structure of FaNaC1 in the 
presence of ASSFVRIa, a product of the FVRIamide precursor in several 
annelids that gates FaNaC1 with relatively low potency and efficacy  
(Fig. 4a). The FaNaC1/ASSFVRIa cryo-EM map was resolved to 2.4 Å 
resolution, with a discrete density in the same ligand-binding pocket 
as that described for FMRFa (Fig. 4b and Extended Data Fig. 8). This 
density was best fit by the C-terminal FVRIa segment of the peptide, and 
the N-terminal ASS segment was not resolved (Fig. 4c,d and Extended 
Data Fig. 8). This indicates a very similar binding mechanism for both 
full and partial agonists, whereby FaNaC1 V122 and F129 coordinate the 
hydrophobic C-terminal side chain—F4 in FMRFa and I7 in ASSFVRIa 
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(± s.e.m., n = 4 oocytes) normalized currents in response to increasing 

FMRFa concentrations at indicated mutants. Data points beyond saturating 
concentrations omitted for clarity. WT curve repeated from Fig. 1a. d, Mean  
(± s.e.m., n = 3 oocytes for AMRFa and 4 oocytes for all other peptides) 
normalized currents in response to increasing concentrations of different 
ligands at WT FaNaC1. Data points beyond saturating concentrations omitted for 
clarity. WT curve repeated from Fig. 1a.
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(Fig. 4c,d). We confirmed that the four C-terminal residues of ASSFVRIa 
determine its agonist activity by measuring FaNaC1 responses to FVRIa, 
observing very similar activity to the parent peptide (Fig. 4a). Similar 
binding mechanisms for neuropeptides with loosely conserved hydro-
phobic C-terminal residues and divergent N-terminal segments explains 
how annelid FaNaCs are gated by diverse neuropeptides, including 
FMRFa, various FVRIamides and LFRYa (ref. 21).

Full agonist FMRFa and partial agonist ASSFVRIa induce highly 
similar FaNaC1 conformations (Fig. 4c). In addition to the high similar-
ity between FaNaC1/FMRFa and FaNaC1/ASSFVRIa structures, neither 
preparation yielded additional distinct 3D classes or any indication 
of conformational heterogeneity in the image processing (Extended 
Data Figs. 2 and 8). Thus, the partial agonism of ASSFVRIa does not 
appear to derive from the induction of a different conformational state 
compared to FMRFa.

A putative open-channel state
To establish how ligand binding induces channel gating, we compared 
ligand-free and ligand-bound FaNaC1 structures. In both ligand-bound 
structures, however, the channel pore appears closed, with radii of ~1 Å 
at the level of G503 and G506 in TM2a (G3′ and G6′ in a TM2 numbering 

scheme33; Fig. 5a). This is similar to our ligand-free, inactive FaNaC1 
structure (Fig. 5a) and is too narrow to pass even mostly dehydrated 
Na+ ions (~2.3 Å). Thus, FMRFa- and ASSFVRIa-bound channels have 
probably adopted a desensitized state in the prolonged presence of 
agonist, in accord with the large decrease in current amplitude that 
occurs within ~2 s of FMRFa application, especially at higher FMRFa 
concentrations (for example, Figs. 1a, 2b, 4a and 5b). We think this 
rapid decrease in current is desensitization rather than channel block 
of FaNaC1 by the cationic moiety of FMRFa, as it also occurs at positive 
membrane potentials and also with noncationic derivatives of FMRFa 
(Extended Data Fig. 5c,d).

We therefore sought structural data on a ligand-bound, 
open-channel state by solving the structure of FaNaC1 in the presence 
of both FMRFa and diminazene, a pore blocker of diverse DEG/ENaC 
channels20,34,35 that delays desensitization in ASICs by plugging the 
open channel pore35. We first verified that diminazene blocks FaNaC1 
expressed in Xenopus oocytes by co-applying FMRFa and diminazene 
and observed inhibition of both peak (IC50 = 9 ± 3 μM, n = 5) and sus-
tained FMRFa-gated current (IC50 = 1.8 ± 0.9 μM, n = 6; Fig. 5b and 
Extended Data Fig. 9a,b). Diminazene block was stronger at negative 
membrane potentials, and a large rebound current was observed after 
the removal of FMRFa and diminazene (Fig. 5b), suggesting that the 
positively charged drug inhibits FaNaC1 by plugging the open-channel 
pore and preventing the channel closure that occurs in desensitization.

In solving the FaNaC1/FMRFa/diminazene structure, several 3D 
classes emerged during our image analysis, with two predominating: 
a closed-channel class similar to the FaNaC1/FMRFa structure; and a 
class that differed from the others with dilated mid- to upper pore, 
and some probably nonprotein density in the channel pore (Fig. 5c and 
Extended Data Fig. 10). We focused on this second 3D class, resolving 
the structure to 3 Å resolution (Extended Data Fig. 10). We easily mod-
eled TM2 helices into the cryo-EM density and observed an ~1 Å increase 
in the pore radius relative to our other structures (Fig. 5a). Although 
the resolved density in the pore was too small to accommodate a full 
diminazine molecule (Fig. 5b,c), no such density or dilated confor-
mation was observed in the diminazine-free FMRFa-bound dataset 
(Extended Data Fig. 2), suggesting that diminazene binds and affects 
FaNaC1 pore conformation.

Given the drug’s effect on pore radius and its voltage-dependent 
block of currents, we hypothesized that this nonprotein density derives 
from partially unresolved or low occupancy diminazene molecules. 
To investigate this further, we measured diminazene block of mutant 
FaNaC1 channels and observed that increasing side chain volume 
around the density via the G6’S substitution drastically reduced, and 
via the G3’S substitution one helical turn higher modestly reduced, 
diminazene potency (Fig. 5c,d and Extended Data Fig. 9c). This suggests 
that diminazene binds intimately at the level of G6′. We also generated 
mutant G2′S channels but saw no currents in oocytes injected with these 
RNAs (n = 8 over two batches of ooyctes). An additional helical turn 
higher, the S-1′A substitution caused constitutive current, as expected 
for mutating the TM2a-1′ degenerin position36, but had no effect on 
diminazene potency (Fig. 5d and Extended Data Fig. 9c). In contrast, 
the D0′N substitution decreased diminazene potency approximately 
tenfold (Fig. 5d), suggesting that the relatively well-conserved TM2a 0′ 
carboxylate is important for sensitivity to diminazene. This may explain 
why ENaCs, which instead possess asparagine at the 0′ position, are 
insensitive to diminazene37 and closely reflects computational dock-
ing of the drug to ASIC1, where the D0′ carboxylate engages the upper 
positively charged amidine moiety35. Thus, we interpret our FaNaC1/
FMRFa/diminazene structure as an FMRFa-gated, diminazene-blocked, 
open-channel conformation.

Based on the pore radius of ~2 Å at G3′, G6′ and the re-entrant loop 
in our putatively open-channel structure (Fig. 5a), FaNaC1 presum-
ably passes partly dehydrated Na+ ions and its pore is narrower than 
the previously captured open-channel structure of ASIC1 (ref. 11), 
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although the re-entrant loop was not resolved in the latter. Further-
more, we found that larger nitrogen-based cations, ammonium and  
methylammonium, were much less permeant than Na+ in FaNaC1  
(Fig. 5e), as observed for ENaC38 but different from ASIC1, which 

conducts substantial ammonium and methtylammonium cur-
rent39,40. This suggests that, compared to ASIC1, FaNaC1 adopts a 
narrower open-channel pore, as represented by our FMRFa-gated, 
diminazene-blocked structure, and that FaNaC1 presumably passes 
partly dehydrated Na+ ions.

Ligand-induced channel gating
Finally, we compared ligand-free FaNaC1 and FaNaC1/FMRFa/dimi-
nazene structures to establish the structural mechanism by which 
FMRFa binding opens the channel. In its binding pocket, FMRFa draws 
the C-terminal end of α2 and α3a (distal finger domain) 3–5 Å upward 
and inward in the direction of α6 of the adjacent subunit, whereas the 
N-terminal end of α2, α3b/α3c and all of α6 (knuckle) are relatively 
static (Fig. 6a,b). This in turn draws the peripheral and long, vertical α5 
segment (thumb) ~3 Å inward and ~2 Å upward (Fig. 6a,b). In contrast 
to the peripheral thumb, the more internal loops and β-sheets of the 
palm and β-ball domains remain relatively static, exemplified by F74 
and Y174 side chains in a hydrophobic hub within this region (Fig. 6b). 
The net result of peripheral movement on internal stasis is that the 
extracellular domain of a single subunit rolls anticlockwise (viewed 
from above) and upward (viewed from the side, Fig. 6c). Extracellular 
domain rolling pulls the β-turn at the proximal-thumb/wrist domain 
outward, which couples to upper-channel expansion via β-turn H297 
interactions with TM1 Y59 and TM2a E490 (Fig. 6b,c).

Seeking verification that β-turn–TM1/TM2 interactions medi-
ate channel gating, we tested the activity of mutant H297S channels 
in which the large H297 side chain is replaced with a much smaller 
side chain, making these interactions less likely. H297S channels were 
constitutively active, with 3.8 ± 1.3 μA (n = 10) current in the absence 
of agonist (120 ± 40 nA in WT, n = 10), which was blocked on average 
76 ± 5% (n = 7) by 30 μM diminazene (Fig. 6d). Furthermore, the addi-
tion of FMRFa activated additional current, with increased potency 
compared to WT, and the relative efficacy of partial agonist ASSFVRIa 
was increased by the mutation (Fig. 6d). Thus, the H297S mutation 
increases gating efficacy. This suggests that WT resting FaNaC1 chan-
nels are energetically primed for opening but cannot do so until ligand 
binding and extracellular domain rolling releases TM1/TM2a via out-
ward H297 movement.

We find that ligand-induced channel gating extends to the lower 
part of the pore, observing a 1 Å increase in pore radius at the level of 
re-entrant loop T15 and H17 side chains compared to the ligand-free 
state (Fig. 5a). This offers structural evidence for lower-pore gating 
that was suggested to occur in molluscan FaNaC and mammalian ENaC 
based on electrophysiological studies41–43. Lower-pore dilation is simi-
lar in both FaNaC1/FMRFa/diminazene and FaNaC1/FMRFa structures 
(Fig. 5a), in contrast to upper-pore dilation, which is present in the 
FaNaC1/FMRFa/diminazene structure but collapsed in the desensitized 
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FaNaC1/FMRFa structure (Fig. 5a). This suggests that desensitization 
is an upper-channel and extracellular vestibule phenomenon. We also 
observed a remarkably large conformational change in the β5–β6 loop 
(residues K200–G218) of the extracellular domain, which flips from a 
downward orientation in our ligand-free structure to an upward ori-
entation in all ligand-bound structures (Fig. 6a,b). This involves, for 
example, L211 displacing 20 Å (Fig. 6b) and is a notable exception to the 
otherwise immobile palm/ball domain. Whether β5–β6 loop flipping 
is a consequence of activation or a diminazine-insensitive aspect of 
desensitization would require further investigation.

Discussion
Structural basis for diverse activators of DEG/ENaCs
Our four Malacoceros FaNaC1 structures offer a precise descrip-
tion of neuropeptide binding and a comprehensive view of ligand- 
induced channel gating in a DEG/ENaC channel. The extracellular 
neuropeptide-binding pocket is formed by dynamic α1–α3 seg-
ments of the finger domain and more static β6–β7 and α6 segments 
of proximal-finger and knuckle domains. Comparison with other 
DEG/ENaCs shows similar overall channel architecture but divergent 
sequence and secondary and tertiary structure in the first three helices 
of the finger domain (Extended Data Fig. 6). Despite its divergence in 
different DEG/ENaCs, this external corner of the DEG/ENaC trimer 
appears to play important roles in gating throughout the superfam-
ily. It includes modulatory ion- and protease-binding sites in ENaC15,44, 
residues whose mutation decreases pH sensitivity in ASICs45, and pro-
posed sites for extracellular matrix tethering to mechano-sensitive 
DEG/ENaCs46.

α1–α3 amino acid sequence is even divergent between closely 
related annelid FaNaCs and mollusk FaNaCs (Extended Data Fig. 7). 
Despite this divergence, α1–α3 helices form an architecturally very 

similar FMRFa-binding pocket in both Malacoceros (annelid) FaNaC1 
and Aplysia (mollusk) FaNaC30. But whereas FMRFa F4 orients most 
deeply into the site in Malacoceros FaNaC1, F1 orients most deeply in 
Aplysia FaNaC. This is reflected in previous work showing that anne-
lid FaNaCs are gated by partial agonists containing N-terminal addi-
tions such as PSSFVRIa and LFRYa21, in contrast to mollusk FaNaCs, 
which are instead gated by partial agonists more closely analogous to 
FMRFa19,21,31,32. Because of this divergence within α1–α3 helices, bind-
ing site residues whose mutations decrease FMRFa potency, such as 
Malacoceros FaNaC1 α2-V122 and α2-F129 and several α1–3 residues in 
mollusk FaNaCs30,47–49, actually occupy different orientations in space 
or are even absent from various cousins within the broader FaNaC 
family (Extended Data Fig. 7). Perhaps surprisingly, the more strictly 
conserved determinants of agonist potency throughout the FaNaC 
family, whose mutation decreases FMRFa activity in various FaNaCs, 
are in a different site, between palm and β-ball domains of adjacent 
subunits21. Our combined structural and experimental study now 
shows these conserved residues are probably important for coupling 
ligand binding in the finger domain to channel gating further below 
and not for ligand binding.

Channel gating and ion conduction illuminated by FaNaC1
Previously, our understanding of DEG/ENaC gating mechanisms and ion 
conduction was based on chicken ASIC1 structures in resting, active and 
desensitized states11,12,25. The FaNaC1 structures presented here capture 
a ligand-free resting state, two ligand-bound desensitized states and 
a ligand-bound dilated channel state. The comparison of these struc-
tures points to a gating mechanism in which the outer finger domain 
closes around the agonist, starting an anticlockwise rotation of the 
extracellular domain (Fig. 6). As the palm remains static, the periphery 
of the extracellular domain (the thumb) rolls anticlockwise and upward 
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with the finger helices, pulling the upper part of the channel domain 
(wrist) outward, resulting in pore dilation (Fig. 6c). This anticlockwise 
extracellular domain rotation and wrist expansion loosely reflects gat-
ing of ASIC1 (ref. 12), although the principal trigger(s) initiating these 
conformational changes in ASIC1 are yet to be identified13.

Despite macroscopic desensitization of FaNaC1 reflecting that 
of several ASICs, with fast entry to desensitization and then a notice-
able sustained current4, the structural basis for desensitization may 
differ between FaNaCs and ASICs. The large rearrangement of the 
β11–β12 linker during ASIC1 desensitization12 is not observed in FaNaC1, 
although we do observe a large conformational change of the FaNaC1 
β5–β6 loop, which is close to the β11–β12 linker (Fig. 6b). We notice 
concentration-dependent desensitization in FaNaC1, with little and 
large decreases in current amplitude in low and high FMRFa concentra-
tions, respectively, and with extremely slow washout of currents after 
high concentrations of FMRFa (Extended Data Fig. 5). Rapid current 
decay and smaller current amplitudes with high ligand concentrations 
in FaNaC1 did not seem related to pore block by the ligand, in contrast 
to what has been suggested for mollusk FaNaCs26,30,48.

An advance of our study is the capture of a potentially open-channel 
pore structure. In previous high-resolution DEG/ENaC structures the 
channel domain was difficult to resolve11,12,15, and in particular, the 
only open-channel structure of chicken ASIC1 does not include the 
pore-lining pre-TM1 re-entrant loop11. Nonetheless, a better resolved 
picture of ion conduction throughout the superfamily emerges from 
the comparison of FaNaC1 and distantly related ASIC1 pores. FaNaC1 
is more closely related to ENaC7,34,50, both of these channels are poorly 
permeable to nitrogen-based cations larger than Na+(ref. 38), and our 
FaNaC1/FMRFa/diminazene structure reveals an ion pathway slightly 
narrower than both ASIC1 and voltage-gated sodium channels11,51, both 
of which pass ammonium, methylammonium and hydroxylamine 
relatively well39,40,52. Taken together, our capture of FaNaC1 in differ-
ent functional states describes the mechanism by which FMRFa elicits 
excitatory neuronal signals and offers a template for future studies 
dissecting channel gating and ion conduction in DEG/ENaCs.
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Methods
Cell lines
Adherent HEK293T cells (CRL-3216, American Tissue Culture Collec-
tion) were cultured in 10-cm Petri dishes in Dulbecco’s modified Eagle 
medium with l-glutamine and sodium pyruvate (Gibco), supplemented 
with 10% fetal bovine serum (FBS) and antibiotic–antimycotic at 37 °C 
and 5% CO2. Suspension HEK293S GnTI− cells (CRL-3022, American 
Tissue Culture Collection) were maintained in Freestyle medium 
with GlutaMAX (Gibco) supplemented with 1% FBS and antibiotic–
antimycotic solution, at 37 °C, 5% CO2 and 60% humidity, in TPP600 
bioreactors. Sf9 cells (12659017, ThermoFisher Scientific) were cul-
tured in SFMIII medium supplemented with antibiotic–antimycotic,  
at 27 °C.

Protein expression and purification
Commercially synthesized Malacoceros fuliginosus FaNaC1 coding 
sequence (Supplementary Notes) was cloned into a pEZT-BM vec-
tor54 adapted for FX cloning55 with C-terminal HRV-3C cleavage site, 
Venus YFP, myc and SBP tags. For expression screening, adherent 
HEK293T cells at ~60% confluency were transfected with this plas-
mid using PEI 40K MAX (DNA:PEI ratio of 1:3, 10 μg DNA per dish). 
Protein was expressed for 48 h, cells were collected, washed with 
phosphate-buffered saline and stored at −80 °C until further use. 
Cells from one dish were resuspended in 200 μl extraction buffer 
(2% n-dodecyl β-maltoside (DDM), 0.4% cholesteryl hemisuc-
cinate (CHS), 20 mM HEPES pH 7.6, 150 mM NaCl, 10% glycerol 
and cOmplete protease inhibitors), proteins were extracted for 
2 h. Lysate was centrifuged at 150,000g and supernatant was ana-
lyzed on Tosoh G4000PWXL using fluorescence size-exclusion  
chromatography56.

Large-scale expression of Malacoceros FaNaC1 was per-
formed using BacMam expression system57. Virus was generated as 
described54,57. Briefly, the Malacoceros FaNaC1 bacmid was generated 
following the Invitrogen Bac-to-Bac protocol. Afterward, Sf9 cells 
were transfected with the bacmid using Cellfectin according to the 
manufacturer’s instructions. Four to five days after transfection, the 
P0-containing supernatant was collected and supplemented with 10% 
FBS, and this virus stock was used to generate P1. Sf9 cells were infected 
at density 1 × 106, and once the majority of cells were fluorescent, the 
supernatant containing virus was filtered, supplemented with 10% FBS 
and stored at 4 °C until further use. One day before infection, HEK293S 
were split to 0.6 × 106 cells per ml density. The following day, titerless 
P1 virus was diluted 1:10 into expression culture. After 24 h, sodium 
butyrate was added to a final concentration of 10 mM and the protein 
was expressed for additional 48 h. Cells were collected, washed with 
phosphate-buffered saline and stored at −80 °C.

All of the purification steps were performed on ice or at 4 °C. Cell 
pellets from ~6 l of expression culture were resuspended in buffer A 
(20 mM HEPES pH 7.6, 150 mM NaCl, 10% glycerol, DNase I, 2 mM MgCl2, 
2% DDM, 0.4% CHS and cOmplete protease inhibitor tablets), and the 
protein was extracted for 2 h under gentle agitation. The lysate was 
centrifugated at 200,000g for 30 min, the supernatant was applied 
to the 3K1K resin (GFP enhancer nanobody produced in Escherichia 
coli as described58 and coupled to NHS-sepharose (Cytiva) accord-
ing to manufacturer’s instructions). The supernatant was incubated 
with the resin for 30 min and passed through the resin three to four 
times in a gravity flow column. The resin was washed with ~30 column 
volumes of buffer B (20 mM HEPES pH 7.6, 150 mM NaCl, 10% glycerol 
and 0.02% glyco-diosgenin (GDN). Afterward, the protein was cleaved 
off the resin in batch with HRV-3C protease (~1.2 mg) for 2 h. The elu-
ate was concentrated using 100 kDa cutoff Amicon centrifugal filter 
units at 600g and injected onto a Superose 6 Increase 10/300 col-
umn equilibrated in buffer C (20 mM HEPES pH 7.6, 150 mM NaCl and 
0.02% GDN). Main peak fractions were pooled and concentrated as  
described above.

Nanodisc reconstitution
Nanodisc reconstitution was performed as described59. Briefly, lipids 
(POPC:POPG 3:1 molar ratio) were pooled, dried using rotary evapora-
tor, and washed with diethyl ether. After diethyl ether was evaporated, 
the lipids were rehydrated in ND buffer (20 mM HEPES, 150 mM NaCl 
and 30 mM DDM) at a concentration of 10 mM. Purified protein was 
mixed with lipids and incubated for 30 min, after which the purified 
MSP was added and incubated for 30 min, followed by addition of 
SM-2 biobeads (200 mg ml−1 of assembly reaction). The assembly 
ratios FaNaC:lipids:MSP were 3:1,100:10, assuming 1 FaNaC trimer 
per five assembled nanodiscs. The mixture was incubated overnight 
at 4 °C with gentle agitation. The following day, the sample was con-
centrated in 100 kDa Amicon concentrators at 500g and injected 
onto a Superose 6 Increase 10/300 column equilibrated in buffer D 
(20 mM HEPES pH 7.6 and 150 mM NaCl). Higher molecular weight 
peak containing nanodisc-reconstituted FaNaC1 was pooled and 
concentrated as above to 1.4–1.8 mg ml−1. Ligands and diminazene 
were added directly before freezing (FMRFa 30 μM, ASSFVRIa 100 μM 
and diminazene 100 μM).

Cryo-EM sample preparation and data acquisition
Quantifoil 1.2/1.3 Au grids with 300 mesh were glow-discharged at 5 mA 
for 30 s. The grids were prepared using a Vitrobot Mark IV (Thermo 
Fisher). For that, 2.8 μl of freshly prepared sample was applied to grids, 
which were blotted for 3.5 s with a blot force 0 at 15 °C and 100% humid-
ity. The grids were plunge-frozen in an ethane–propane mixture and 
stored in liquid nitrogen until further use. The data were recorded at 
the University of Groningen on a 200 keV Talos Arctica (Thermo Fisher) 
with a K2 summit direct detector (Gatan), a post-column energy filter 
with a 20 eV slit and a 100 μm objective aperture. Optimal squares 
and holes for data collection were selected using an in-house sam-
ple thickness estimation script60. The images were recorded in an 
automated fashion using SerialEM v.3.9.0 beta61 with a 3 × 3 multi-
shot pattern. Cryo-EM images were acquired at a pixel size of 1.022 Å 
(calibrated magnification of ×49,407), a defocus range from −0.5 to 
−2 μm, an exposure time of 9 s with a subframe exposure time of 150 ms  
(60 frames) and a total electron exposure on the specimen of about 
52 electrons Å−2. Micrographs were preprocessed on the fly in FOCUS 
v.1.1.0 (ref. 62) using MotionCor2 v.1.4.0 (ref. 63) for motion correction 
and ctffind4.1.14 (ref. 64) for contrast transfer function (CTF) resolu-
tion estimation. Images with defocus values 0.4–2 μm, showing no 
ice contamination and a CTF resolution estimate better than 6 Å were 
selected for further processing.

Image processing
The collected datasets were processed following an essentially identical 
scheme, with the exception of the FaNaC1/FMRFa/diminazene dataset. 
Particles were picked using a general model in crYOLO v.1.8.2 (ref. 65), 
and subsequently extracted in Relion v.3.1.0 (ref. 66) with a box size of 
220 pixels for FMRFa, ASSFVRIa and FMRFa/diminazene datasets, and 
240 pixels for apo, respectively. The extracted particles were imported 
into cryoSPARC v.3 (ref. 67) and subjected to 2D classification (initial 
batch size 200, ten final full iterations). Particles from selected 2D 
classes were subjected to ab initio 3D reconstruction with five classes 
and subsequent heterogeneous refinement using all five ab initio 
classes as an input. Particles from the best class were imported into 
Relion v.3.1, and subjected to Bayesian polishing followed by several 
rounds of CTF refinement. In the case of the diminazene-supplemented 
dataset, particles were further classified with no image alignment and 
a mask covering the transmembrane part to resolve the conformation 
heterogeneity in the pore region. In all cases, the final sets of particles 
were subjected to masked refinement with a C3 symmetry imposed. 
The half-maps were used as inputs for postprocessing in deepEMhancer 
220530_cu10 (ref. 68) with a tight model. Resolution was estimated in 
Relion v.3.1 postprocessing, using a mask excluding nanodisc density 
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according to the standard Fourier shell correlation cut-off of 0.143 
(Extended Data Figs. 1, 2, 8 and 10).

Model building and refinement and pore analysis
The initial model of Malacoceros FaNaC1 was predicted using 
AlphaFold 2 (ref. 69) and adjusted manually in Coot v.0.9.8.1 (ref. 
70). Models were iteratively adjusted in Coot and ISOLDE v.1.6.0  
(ref. 71), followed by real-space refinement in Phenix v.1.20.1-4487 
(ref. 72) with non-crystallographic symmetry and secondary struc-
ture restraints against a refined unsharpened map. Figures were 
prepared in Pymol v.2.5.5, Chimera v.1.16 (ref. 73) and ChimeraX v.1.5  
(ref. 74). Channel pore radius was calculated with HOLE53 imple-
mented in Coot.

Electrophysiology and data analysis
FaNaC1 in a modified pSP64 plasmid vector (Supplementary Notes) was 
used for mutagenesis and messenger RNA preparation and injection 
into stage V/VI Xenopus laevis oocytes (EcoCyte Bioscience). Mutants 
were generated by partly overlapping primers (Supplementary Table 1 
and ref. 75), and channel-coding inserts were Sanger sequenced. FMRF–
NH2, ASSFVRI–NH2, FVRI–NH2, AMRF–NH2, FMRA–NH2, FMQF–NH2 and 
FM(citrulline)F–NH2 (acetate salts, custom synthesized by Genscript, 
purity 95.1–99.6% purity by high-performance liquid chromatography, 
mass confirmed by electrospray ionization–mass spectrometry) were 
dissolved in water to 10 mM and diminazene aceturate (Merck) was 
dissolved in dimethyl sulfoxide to 100 mM before dilution in experi-
mental solution: (in mM) NaCl 96, KCl 2, CaCl2 1.8, MgCl2 1 and HEPES 5,  
pH 7.5 (NaOH). NaCl was replaced with KCl, NH4Cl or H3CNH3Cl (Merck) 
where appropriate.

Oocytes were clamped at −60 mV unless otherwise indicated, 
and currents were measured by two-electrode voltage clamp, as 
previously described21, using a Warner OC-725C amplifier and HEKA 
LIH8 + 8 interface with Patchmaster 2x90.4 software (HEKA), sam-
pling at 500 Hz or 1 kHz and filtering at 100 Hz. Current amplitudes 
were measured in Clampfit v.11 (Molecular Devices). N values refer 
to experiments performed on different oocytes. Data were ana-
lyzed in Prism v.9 (GraphPad) and fit with Prism v.9 variable-slope 
four-parameter nonlinear regression, yielding half-maximal effec-
tive activating/inhibiting concentrations (EC50/IC50). In establish-
ing EC50 values for activation by FMRFa, we waited 4 min between 
applications of increasing concentrations. As detailed in Extended 
Data Fig. 5a,b, this risked incomplete recovery from desensitization 
at high ligand concentrations, but it ensured better recordings with-
out substantially affecting EC50. Mean ± standard error of the mean 
(s.e.m.) EC50/IC50 from fits to individual cells reported in Main. Fits to 
averaged data points shown in figures. Currents shown in figures are 
further filtered (20 Hz) and decimated (50×) in Clampfit 11 for smaller  
file size.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The Malacoceros fuliginosus FaNaC1 coding sequence is avail-
able in GenBank (entry ON156825.1) and shown in Supplemen-
tary Notes. Ligand-free, FMRFa-bound, ASSFVRIa-bound and 
FMRFa-bound+diminazene structures are available in PDB via entries 
8ON8, 8ON7, 8ON9 and 8ONA, and in EMDB via entries 16982, 16981, 
16983 and 16984, respectively. Micrographs were deposited to EMPIAR 
under the following accession codes: 11631 (apo FaNaC1), 11632 
(FMRFa-bound FaNaC1), 11633 (ASSFVRIa-bound FaNaC1) and 11634 
(FMRFa-bound FaNaC1 in the presence of diminazene). Source data 
are provided with this paper.
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Extended Data Fig. 1 | Ligand-free FaNaC1 structure determination by cryo-
EM. (a) Size exclusion profiles of detergent-solubilised (blue) and nanodisc-
reconstituted (magenta) Malacoceros FaNaC1. Samples were analysed on a 
Superose 6 Increase 10/300 column. (b) SDS-PAGE of the main peak fraction, 
which was used for sample preparation for cryo-EM. Protein was purified and 
reconstituted into lipid nanodiscs three times with similar size exclusion profiles 
(a) and gel migration (b). Representative cryo-EM image of 5361 micrographs (c) 
and 2D classes (d) of vitrified FaNaC1 in apo state. (e) Angular distribution of the 
particles included in the final C3-symmetrised map. The length and the colour of 

the sticks represent the number of particles. (f) Schematic representation of the 
processing workflow, the mask used in the final refinement iteration is displayed 
as a transparent outline. (g) FSC plot used for resolution estimation (0.143 cut-off 
criteria). (h) Density corresponding to the transmembrane domain and ligand-
binding domain shown as grey mesh, deepEMhancer map used for visualization 
is contoured at 4.5 σ. The respective fitted model is shown in blue. (i) Final 
deepEMhancer-postprocessed map coloured according to the local resolution 
estimation in Relion.

http://www.nature.com/nsmb
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Extended Data Fig. 2 | FMRFa-bound FaNaC1 structure determination by 
cryo-EM. Representative cryo-EM image of 4479 micrographs (a) and 2D classes 
(b) of vitrified FaNaC1 in presence of FMRFa. (c) Angular distribution of the 
particles included in the final C3-symmetrised map. The length and the colour 
of the sticks represent the number of particles. (d) FSC plot used for resolution 
estimation (0.143 cut-off criteria). (e) Schematic representation of the processing 
workflow, the mask used in the final refinement iteration is displayed as a 

transparent outline. (f) Density corresponding to the transmembrane domain 
shown as grey mesh, deepEMhancer map used for visualization is contoured at 
4.5 σ. The respective fitted model is shown in purple. (g) Final deepEMhancer-
postprocessed map coloured according to the local resolution estimation 
in Relion. (h) Close-up view of the ligand-binding site, deepEMhancer map is 
displayed as grey mesh contoured at 4.5 σ, fitted atomic model is displayed in 
purple, FMRFa molecule is shown in yellow.

http://www.nature.com/nsmb
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Extended Data Fig. 3 | Amino acid sequence alignment of FaNaCs and other 
DEG/ENaCs. Malacoceros fuliginosus (Mal., bristle worm) FaNaC1 and WaNaC, 
Aplysia kurodai (Apl., sea slug) FaNaC, Octopus bimaculoides (Oct.) FaNaC, Gallus 
gallus (Gal., chicken) ASIC1, Hydra vulgaris (Hyd.) HyNaC, human (Hom.) BASIC 
and ENaC, Caenorhabditis elegans (Cae.) MEC-10, and Drosophila melanogaster 
(Dro.) PPK26 were extracted from an existing alignment of 544 DEG/ENaCs21 and 

manually adjusted in α1-α3 to reflect secondary structure (dark blue α-helices, 
light blue β-strands) of FaNaC1 (present work) and ASIC114. Selected FaNaC1 
residues discussed in main text are numbered. ‘Prime’ numbering (for example 
0’, 3’, 6’) for better comparison of TM2 residues33. d, position of gain-of-function 
degenerin mutations46. Orange boxes, FaNaC1 disulfide-forming cysteines. Blue 
boxes, FaNaC1 glycosylation sites.

http://www.nature.com/nsmb
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Extended Data Fig. 4 | Effect of FaNaC1 on the surrounding lipid bilayer. Shown are unmasked refined maps of FaNaC1 in apo- (blue) and FMRFa-bound (purple) 
states, density corresponding to nanodisc and glycosylation sites are shown in yellow. Right, surface representation of the refined models coloured according to 
hydrophobicity.

http://www.nature.com/nsmb
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Extended Data Fig. 5 | Measurement of FMRFa and other peptide potency. 
(a) Left, example recordings, and right, individual (points) and mean (columns; 
n = x oocytes indicated in italics on columns) amplitude of a second FMRFa-
gated current (‘I2’) relative to a first (‘I1’) after four minutes or eight minutes 
recovery, for 1 μM- and 10 μM-gated currents. (b) Left, example recordings 
(dashed line, zero current baseline), and right, mean ± SEM (n = 3 or 5 oocytes 
as indicated) FMRFa concentration-dependent current amplitude (‘I/Imax’) with 
four-minute or eight-minute recovery between applications. Note how in the 
bottom-left recording, leak current develops after ~20 minutes due to oocyte 

membrane rupture. (c) Upper, example recordings of currents gated by high 
FMRFa concentrations at different membrane potentials. Lower, mean ± SEM 
(n = 3 oocytes) ratio of current after five seconds (‘Isustained’) to initial peak current 
(‘Itransient’), at different potentials or with different peptide ligands. This ratio is 
similar at different membrane potentials and with different peptide ligands, 
indicating a similar level of desensitization at each potential and with each 
ligand. (d) Example recordings of currents gated by increasing concentrations of 
different peptide ligands.

http://www.nature.com/nsmb


Nature Structural & Molecular Biology

Article https://doi.org/10.1038/s41594-023-01198-y

Extended Data Fig. 6 | Comparison of FaNaC1 and other DEG/ENaC structures. 
Upper panels, Malacoceros FaNaC1/FMRFa structure (purple and white subunits, 
yellow FMRFa) overlaid on two chicken ASIC1 subunits (light teal and dark teal; 
left) and overlaid on two human ENaC subunits (light blue and dark blue; right), 

viewed from the extracellular space (‘from above’). Mid panels, magnified views 
of upper panels. Selected helices labelled (arrows indicate direction of peptide 
backbone). Lower panels, the same site, viewed from the side.

http://www.nature.com/nsmb
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Extended Data Fig. 7 | Comparison of Malacoceros FaNaC1 and Aplysia FaNaC. 
(a) Side view (left), magnified side view of FMRFa-binding site (middle), and 
magnified side view of channel domain with front subunit removed for clarity 
(right) of Malacoceros FaNaC1 and Aplysia FaNaC from elsewhere30. Selected 
Malacoceros FaNaC1 ligand-binding residues cyan, Aplysia FaNaC ligand-binding 
residues light green, conserved residues in interfacial site and channel domain 

orange. (b) Amino acid sequence alignment of annelid FaNaCs (upper three; 
Mal., Malacoceros fuliginosus; Cap., Capitella teleta), annelid Wamide-gated Na+ 
channels (WaNaCs, grey; Pla., Platynereis dumerilii), and mollusc FaNaCs (lower 
four; Oct., Octopus bimaculoides; Cra., Crassostrea gigantea; Hel., Helix aspersa; 
Apl., Aplysia californica). Secondary structure elements for Malacoceros and 
Aplysia FaNaCs are indicated and residues are highlighted according to (a).

http://www.nature.com/nsmb
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Extended Data Fig. 8 | ASSFVRIa-bound FaNaC1 structure determination by 
cryo-EM. Representative cryo-EM image of 7132 micrographs (a) and 2D classes 
(b) of vitrified FaNaC1 in ASSFVRIa-bound state. (c) Angular distribution of the 
particles included in the final C3-symmetrised map. The length and the colour 
of the sticks represent the number of particles. (d) FSC plot used for resolution 
estimation (0.143 cut-off criteria). (e) Schematic representation of the processing 
workflow, the mask used in the final refinement iteration is displayed as a 

transparent outline. (f) Density corresponding to the transmembrane domain 
shown as grey mesh, deepEMhancer map used for visualization is contoured 
at 4.5 σ. The respective fitted model is shown in teal. (g) Final deepEMhancer-
postprocessed map coloured according to the local resolution estimation 
in Relion. (h) Close-up view of the ligand-binding site, deepEMhancer map is 
displayed as grey mesh contoured at 4.5 σ, fitted atomic model is displayed in 
teal, FMRFa molecule is shown in orange.

http://www.nature.com/nsmb
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Extended Data Fig. 9 | Effects of diminazene on mutant FaNaC1 channels. (a) 
1 μM FMRF-gated currents with and without diminazene in an oocyte expressing 
wildtype (WT) FaNaC1. Lower panel shows a magnified view, illustrating the 
inhibition of peak and sustained current by diminazene. Scale bars: x, 5 s; y, 
0.2 μA. (b) Mean ± SEM normalized peak (n = 4 oocytes) and sustained (n = 7 
oocytes) current amplitude in the presence of increasing concentrations of 

diminazene. (c) Effect of diminazene and FMRFa on constitutive currents in 
oocytes expressing indicated mutant FaNaC1 channels (upper panel) and effect 
of diminazene on sustained 0.3 μM FMRFa-gated currents in oocytes expressing 
mutant or WT FaNaC1 (lower panel; mean ± SEM shown in Fig. 4d). Scale bars: x, 
5 s; y, 0.1 μA.

http://www.nature.com/nsmb
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Extended Data Fig. 10 | FMRFa-bound FaNaC1 in the presence of diminazene, 
structure determination by cryo-EM. Representative cryo-EM image of 
7284 micrographs (a) and 2D classes (b) of vitrified FaNaC1 in FMRFa-bound 
state supplemented with diminazene. (c) Angular distribution of the particles 
included in the final C3-symmetrised map. The length and the colour of the sticks 
represent the number of particles. (d) FSC plot used for resolution estimation 
(0.143 cut-off criteria). (e) Schematic representation of the processing workflow, 
the mask used in the final refinement iteration is displayed as a transparent 
outline. (f) Final deepEMhancer-postprocessed map coloured according to 

the local resolution estimation in Relion. (g) Density corresponding to the 
transmembrane domain shown as grey mesh, deepEMhancer map used for 
visualization is contoured at 4 σ. The respective fitted model is shown in orange. 
(h) Close-up view of the ligand-binding site, deepEMhancer map is displayed as 
grey mesh contoured at 4 σ, fitted atomic model is displayed in orange, FMRFa 
molecule is shown in yellow. (i) Unassigned density in the pore region displayed 
in magenta, the surrounding protein density in grey, fitted atomic model is 
shown as Cα-trace in hues of orange. One subunit is not displayed for clarity.

http://www.nature.com/nsmb
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