
Nature Structural & Molecular Biology | Volume 30 | November 2023 | 1755–1760 1755

nature structural & molecular biology

https://doi.org/10.1038/s41594-023-01112-6Article

Hallucination of closed repeat proteins 
containing central pockets

Linna An    1,2,4 , Derrick R. Hicks1,2,4, Dmitri Zorine    1,2,4, Justas Dauparas1,2, 
Basile I. M. Wicky    1,2, Lukas F. Milles    1,2, Alexis Courbet    1,2,3, 
Asim K. Bera    1,2, Hannah Nguyen    1,2, Alex Kang1,2, Lauren Carter1,2 & 
David Baker    1,2,3 

In pseudocyclic proteins, such as TIM barrels, β barrels, and some 
helical transmembrane channels, a single subunit is repeated in a cyclic 
pattern, giving rise to a central cavity that can serve as a pocket for ligand 
binding or enzymatic activity. Inspired by these proteins, we devised a 
deep-learning-based approach to broadly exploring the space of closed 
repeat proteins starting from only a specification of the repeat number and 
length. Biophysical data for 38 structurally diverse pseudocyclic designs 
produced in Escherichia coli are consistent with the design models, and the 
three crystal structures we were able to obtain are very close to the designed 
structures. Docking studies suggest the diversity of folds and central 
pockets provide effective starting points for designing small-molecule 
binders and enzymes.

Native cyclic repeat proteins have a broad array of biological functions. 
For example, the triosephosphate isomerase (TIM) barrel1, which con-
sists of eight ɑ/β repeats that close to form an eight-stranded β-barrel 
surrounded by an outer ring of helices, is the most prevalent protein 
fold for enzymes. Single-chain cyclic structures formed by repeating 
units have considerable advantages: at the center is a pocket into which 
side chains from each repeat unit extend, and because these structures 
are single chains, the sequence lining (and local structure) can be fully 
asymmetric. De novo protein design has been used to create repeat 
proteins that do not close2,3, and closed TIM barrels4, parametric bun-
dles5, and all ɑ-helical toroids6. However, a general method for broadly 
sampling repeating cyclic structures without specifying the overall 
architecture or lengths and positions of the secondary structures has 
thus far been missing.

We sought to develop a general approach to overcome these limi-
tations, to enable the generation of a wide range of new cyclic-protein 
scaffolds with central cavities from which small-molecule binders 
and enzymes can be designed. We reasoned that recently developed 
deep-network-based protein hallucination methods7, which optimize 
sequences for folding to specific structures without requiring speci-
fication of what the structure is, could be extended to broadly sample 

cyclic repeat protein structure space given only the repeat-unit length 
and the number of repeats.

Results
Hallucination and sequence design of pseudocycles
We developed a sequence space Markov Chain Monte Carlo (MCMC) 
optimization protocol (Fig. 1a), which, given the length (L) and number 
of repeating units (N), first generates a random amino acid sequence 
of length L and tandemly repeats it N times. We sampled N from 2 to 7, 
and L from 15 to 78, with a maximum protein length of 156 amino acids. 
The protocol then optimizes this sequence by making one to three 
random amino acid substitutions at a random position in one repeat 
unit, propagating these substitutions to all repeat units, evaluating 
the extent to which the sequence encodes a cyclic-repeating-protein 
structure, and finally accepting or rejecting the substitutions accord-
ing to the standard Metropolis criterion. To evaluate sequence folding 
to a cyclic structure, we used AlphaFold2 (ref. 8) (AF2), with a single 
sequence as an input and three recycling stages to predict the structure, 
and we subsequently evaluated the extent of closure by extrapolat-
ing helical parameters from the rigid-body transformations between  
successive repeat units: closed structures are those with near-zero rise 
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‘pseudocycles’ because their backbones have near cyclic symmetry 
(except for the break between the carboxy and amino termini) but the 
sequence is asymmetric. The 21,021 designed pseudocycles span a very 
wide range of topologies containing all ɑ, ɑ/β, and all β subdomains (see 
Figs. 1b, 2, and 3 and Extended Data Fig. 4). In some of the designs, the 
repeat units form compact domains that interact with neighboring 
units through relatively small interfaces; in others, the repeat units 
are more intertwined (Fig. 3). To evaluate how thoroughly our calcu-
lations sample the space of possible pseudocycles, we first reduced 
the structural redundancy (see ‘Protein clustering’ in Methods), then 
we randomly selected 10 subsets of designs with 500, 700, 1,000, or 
5,000 members from the redundancy-reduced pseudocycle sets. For 
each subset, we determined the fraction of designs with structures that 
were very different from any other member of the subset (template 
modeling (TM) score < 0.45, Extended Data Fig. 5). For the smallest 
subsample sizes, the fraction of singleton scaffolds approached 20%; 
with increasing subsample sizes, this fell to below 2.5% (Extended Data 
Fig. 5a). Thus our structure-generation-by-hallucination procedure 
identified almost all pseudocycle solutions that pass our selection  
criteria multiple times, suggesting that our set of 21,021 designs  
fairly comprehensively covers the space of pseudocycles that can be 
generated using our approach.

Experimental characterization of selected pseudocycles
We selected 96 designs that varied in the number of repeat units, length, 
and secondary structure composition for experimental characteriza-
tion, focusing on designs containing designable pockets and folds that 
are rare in the Protein Data Bank (PDB) (Fig. 2). These proteins have 
sequences and structures that are different from those in the PDB, 
with a median Basic Local Alignment Search Tool (BLAST) expect (E) 
value of 0.018 and TM scores between 0.33 and 0.87 (average value, 

along the helical axis, and rotation of 360 / N degrees about the helical 
axis. To guide the MCMC trajectories, we supplemented the closure 
score with AF2 confidence prediction metrics (see ‘Protein generation 
and sequence design pipeline’ in Methods). We found that, after only a 
few hundred steps (see Extended Data Fig. 1), most MCMC trajectories 
optimizing for this combined score converge on sequences that are 
predicted to fold with high confidence into closed cyclic structures 
(Fig. 1b). Because of steric exclusion of the closed cyclic structures, 
individual structural elements avoided clashing with the symmetry 
axis and formed cavities of various sizes in the center.

Although this cyclic hallucination procedure generated a wide 
array of new cyclic backbones, the actual amino acid sequences con-
tained sub-optimal features, such as large hydrophobic surface patches 
and poor secondary structure sequence agreement (Extended Data 
Fig. 2). A limitation of the hallucination procedure, as with any acti-
vation maximization procedure that optimizes over the inputs to 
a neural network, is generation of adversarial examples by overfit-
ting. Hallucination studies on cyclic oligomer design have shown that, 
although AF2-generated sequences were rarely soluble, redesign of the 
hallucinated backbones with ProteinMPNN yielded soluble proteins 
with the desired structures9. Because the backbones are intended  
for ligand-binder design, and most ligands are not symmetric, we  
used ProteinMPNN10, which we gave the hallucinated backbones (see 
‘Protein generation and sequence design pipeline’ in Methods), to 
design new sequences without requiring sequence-repeat symmetry, 
which resulted in sequence-asymmetric final designs (Fig. 1c). Finally, 
we used RoseTTAfold11 (RF) and AF2 to evaluate the extent to which 
the designed sequences encoded the intended structures (Extended 
Data Fig. 3).

We obtained a total of 21,021 designs that were strongly pre-
dicted to fold to the intended structures. We refer to these designs as 
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Fig. 1 | Pseudocyclic protein design. a, Schematic representation of the scaffold 
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Fig. 2 | Biophysical characterization. a–c, First panel, hierarchical clustering 
of designed pseudocycles, the x axes represent relative structural similarity 
distance, the smaller the distance, the more similar the two structures are. The 
number of sub-branches are indicated in brackets. Second panel, diagrams of 
designs selected for experimental characterization; identifiers indicate position 
in dendrograms. Third panel, size-exclusion chromatography (SEC) trace with 
normalized absorption at 280 nm (A280) plotted on the y axis against the elution 

volume plotted on the x axis. Protocols are described in the Methods (‘Expression 
and purification of selected proteins’). Proteins prepared following protocol 1 are 
marked with an asterisk. Fourth panel, CD spectra at different temperatures  
(25 °C in blue, 55 °C in orange, 95 °C in pink, followed by refolding at 25 °C in 
green). a, ɑ-helical topologies (colored teal); b, β-sheet topologies (colored 
magenta); c, mixed ɑ/β topologies (colored dark blue).

× 3

Crystal resolution 2.6 Å

180°

c d

e

Crystal resolution 2.1 Å

× 2

b

180°

a

× 5

180°

Design r.m.s.d. 0.76 Å Design r.m.s.d. 0.49 ÅDesign r.m.s.d. 0.81 Å
Crystal resolution 3.0 Å
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magenta, and teal, respectively. Central pockets in the designs are shown as 
gray spheres (a–c). The secondary structure interface (d) and the center-water-

mediated hydrogen bond network (e) of the refined crystal structure of design 
H10 are shown using sticks. The electron density map of the interface and the 
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hydrogen bond networks are shown as yellow dashed lines, and water molecules 
as red spheres.
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0.54; Supplementary Table 1). We found that, following expression 
in E. coli, 81 of the 96 designs were soluble, and 38 of these 81 soluble 
designs were well-expressed and had circular dichroism (CD) spectra, 
indicating that the proteins were well-folded with overall secondary 
structure content consistent with the design models (Fig. 2 and see 
Extended Data Figs. 6 and 7). Seventeen of these 38 designs were mono-
meric and monodisperse; another 15 were polydisperse with a majority 
monomeric population (Fig. 2 and see Extended Data Figs. 8 and 9)12.

We were able to solve crystal structures of three designed pseu-
docycles. In all three cases, the crystal structures show closed repeat 
structures very similar to the computational design models (Fig. 3 and 
Table 1). The first structure is a helical bundle with pseudo-C5 symmetry 
formed by replication of a helix-turn-helix repeat (Fig. 3a and Extended 
Data Fig. 10). The design model was very accurate, with a Cα r.m.s. 
deviation (r.m.s.d.) of 0.6 Å with respect to the solved structure, and 
was very different from any structure in the PDB (the closest structure, 
3WFB, chain B, has a TM score of 0.392). The outside short helix stubs 
form hydrophobic interfaces with the two neighboring long helices, 
and the hydrophobic side chains lock the helices while leaving a big 
pocket in the middle (see Extended Data Fig. 10). The second structure 
is a simple four-helix bundle with pseudo-C2 symmetry formed by 
duplication of a helix hairpin repeat (Fig. 3b); the closest structure in 

the PDB (5OXF) has a TM score of 0.65. The design model is also very 
accurate, with a Cα r.m.s.d. of 0.8 Å with respect to the solved structure. 
The third structure is a more complex pseudo-C3-symmetric protein 
with a repeated EEHE fold (Fig. 3c–e). The interface between repeat 
units contains seven buried hydrophobic residues contributed by a 
helix-strand motif from one repeat packing into a groove formed by 
three strands from the next repeat unit (Fig. 3d). A water-mediated 
hydrogen bonding network is formed between the three center strands 
and water molecules occupying the central cavity (Fig. 3e). The design 
model was again very accurate, with a Cα r.m.s.d. of 0.5 Å with respect 
to the solved structure, and was very different from any structure in 
the PDB (closest TM score of 0.38 to 1U7Z). All three solved structures, 
like the vast majority of our designs, contain central pockets that can 
be used to design small-molecule binders and enzymes (Fig. 3a–c).

Small-molecule docking for pseudocycles and other scaffolds
To investigate the potential of the designs for scaffolding ligand-binding 
pockets, for each of 9,838 cluster centers (see Supplementary Fig. 1 and 
‘Protein clustering’ in Methods), we carried out rotamer interaction 
field (RIF) docking13 and pocket-design calculations with 19 ligands 
with diverse sizes, shapes, and chemical properties (Supplementary 
Fig. 2 and ‘Ligand docking to pseudocycles, NTF2, and native proteins’ 

Table 1 | Crystallographic data collection and refinement statistics

H10 (8FJF) H12 (8FJG) E8 (8FJE)

Data collection

 Space group P212121 P212121 P22121

Cell parameters

 a,b,c (Å) 34.00, 44.28, 78.12 30.45, 46.59, 73.45 47.85, 65.76, 87.43

 α, β, γ (°) 90, 90, 90 90, 90, 90 90, 90, 90

 Resolution (Å)a 38.53–1.60 (1.65–1.60) 24.08–2.13 (2.21–2.13) 52.56–3.0 (3.3–3.0)

 Unique reflections 16,171 (1,573) 6,175 (546) 5,818 (1,428)

 Rmerge 0.1616 (1.630) 0.1677 (1.026) 0.2032 (1.24)

 Rpim 0.0470 (0.4726) 0.0512 (0.3653) 0.06071 (0.3464)

 I/σ(I) 10.22 (0.97) 11.03 (0.92) 7.95 (2.48)

 Wilson Bfactors (Å2) 31.28 58.99 92.27

 CC1/2 0.996 (0.579) 0.992 (0.505) 0.993 (0.903)

 Completeness (%) 99.88 (99.87) 98.26 (91.00) 98.76 (99.72)

 Redundancy 12.9 (12.9) 12.2 (8.0) 12.7 (13.6)

Refinement

 Resolution (Å) 38.53–1.60 (1.65–1.60) 24.08–2.13 (2.21–2.13) 52.56–3.0 (3.3–3.0)

 No. reflections 16,156 (1,573) 6,090 (546) 5,818 (1,428)

 Rwork / Rfree 0.1961 (0.3347) / 0.2272 (0.3643) 0.2577 (0.4248) / 0.2851 (0.4319) 0.2660 (0.3250) / 0.2962 (0.3625)

No. atoms

 Protein 978 878 2,312

 Solvent 62 5 0

 Ramachandran favored/allowed /outlier 
(%)

100.00/0.00/0.00 98.04/1.96/0.00 95.52/4.48/0.00

R.m.s. deviations

 Bond lengths (Å) 0.011 0.008 0.002

 Bond angles (˚) 1.05 0.91 0.45

 Bfactors (Å2)

 Protein 39.76 69.01 94.70

 Solvent 43.29 62.39 n/a
aStatistics for the highest-resolution shell are shown in parentheses.
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in Methods)14. For each of the 19 ligands, we also carried out RIF docking 
and design calculations for 2,787 single-chain native small-molecule 
binding proteins from the PDB (PDBBind15) and 1,000 previously pub-
lished de-novo-designed NTF2-like proteins16 (see ‘Ligand docking 
to pseudocycles, NTF2, and native proteins’ in Methods). For each 
ligand docking onto a pseudocycle or native protein scaffold, the 
scaffold sequence at the small-molecule interface was optimized for 
high-affinity binding using the Rosetta sequence design suite17, and the 
scaffolds that were most suitable for each ligand were picked on the 
basis of predicted ligand-binding energy, shape complementarity, and 
related docking-quality metrics14. Examples of designed binding sites 
for several diverse ligands to their most-suitable pseudocyclic proteins 
are shown in Figure 4a. We found that, for most ligands, the binding 
sites that could be most easily designed were obtained using the pseu-
docycle scaffolds (Fig. 4b,c and ‘Ligand docking to pseudocycles, NTF2, 
and native proteins’ in Methods), likely because of the great variety of 
binding-site shapes (see Supplementary Fig. 1) and sizes, and the many 
Cα-Cβ vectors pointing into the pocket, which together enable design 
of plausible binding sites for almost any ligand.

Discussion
Our results further illustrate the power of deep network hallucina-
tion to explore the space of possible protein structures given only 
general specifications of structural features—in this case, the number 
and length of the repeating units, and the constraint that the repeat 
units close on themselves to form an overall structure with cyclic sym-
metry. The approach generates a wide variety of structures strongly 
encoded by their amino acid sequences (as evaluated with RF and AF2, 

and further indicated by the close agreement between the crystal  
structures and design models), with between 2 and 7 repeat units 
(N), repeat lengths of 15 to 78 (L), and all ɑ-, ɑ/β-, and all β-folds. The 
sequences of the designs are unrelated to those of naturally occurring 
proteins, and although some structures resemble naturally occurring 
proteins, many have novel tertiary structures. Compared with previ-
ous Rosetta-based scaffold-generation pipelines3,16, our pipeline can 
freely sample structure space and generate widely diverse protein 
architectures. Our pipeline also has substantially higher efficiency 
at both the computational and experimental levels. Out of roughly 
28,000 generated pseudocycles, 21,021 (73.84%) had Rosetta, AF2, 
and RF metrics predictive of folding. By comparison, for the simpler 
problem of helical repeat protein design, the success rate for a pre-
vious Rosetta-based protocol was only 11,243/2,880,000 = 0.39%  
(ref. 3). At the experimental level, 84.4% (81/96) of the designs from our 
pipeline are highly soluble, compared with 17/64 = 26.6% for previous 
Rosetta-based design of small-molecule-binding (NTF2) scaffolds16 
(the solubility rate for Rosetta-based design of helical repeat proteins 
lacking cavities is 74/83 = 89.2%)3.

The de novo design of small-molecule ligand-binding proteins 
and enzymes is still in its infancy. Two approaches have previously 
been used. The first is redeisgning naturally occurring proteins18, 
which is often limited by the relatively low stability of native proteins 
and the complexity of both the structure and sequence–structure 
relationships: such redesigns are often unstable or have unpre-
dictable structural changes. The second approach is to start from 
robust de novo-designed scaffolds that lack features that are diffi-
cult to control, such as long loops, and that have better-understood 
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sequence–structure relationships. This approach has been limited 
by the lack of diversity in available de novo-designed scaffolds13,16,19 
when compared with the diversity of structures in the PDB. The large 
set of pseudocycles with central binding pockets described here com-
bines the diversity of native protein scaffolds with the stability and 
robustness of de novo-designed proteins, and our RIF docking and 
Rosetta design calculations suggest that the designed pseudocycles 
provide better starting scaffolds for small-molecule binder design 
than do either native structures or previously designed de novo NTF2s. 
Future work will focus on designing and experimentally characterizing 
small-molecule binding proteins and enzymes using these scaffolds.
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Methods
Protein generation and sequence design pipeline
Initial models were derived through AF2 prediction of randomly  
generated amino acid sequences. Sequence space was traversed 
through substitutions (one to three substitutions at a time) propagated 
in repeat units followed by evaluation of the predicted structure of  
the modified sequence. Cyclic character was evaluated as helical 
rise near zero and per-unit rotation near 360 / N degrees. For each  
predicted model, the difference between the computed values and 
the ideal values was calculated and then rescaled logistically to a  
score between 0 and 1.

The closure score is a score from 0 to 1 (0 indicates perfect  
closure; 1 indicates no rotation within the unit) that is a linear com-
bination of rescaled delta rise (the value change of rise) and rescaled 
delta rotation (the value change of rotation). Delta rise and delta rota-
tion were computed by extrapolating a screw axis from smoothed rel-
ative transforms between repeat units. Relative transforms between 
matching repeats were derived from protein backbone positions, 
using the nitrogen, ɑ-carbon, and carboxyl carbon to define the  
local coordinate plane for each residue position, and the homo-
genous relative transform between two coordinate frames was 
then derived. Relative transforms were averaged by averaging  
the quaternions corresponding to the relative transforms and 
directly computing the mean translation vector from the relative 
transforms. This smoothed transform was then used as a proxy for 
a rigid-body transform that represents the relationship of repeat 
units. A helical axis was derived from that transform, as were rise 
along and rotation about that axis.

The ideal rise for a cyclic repeat is 0 and an ideal rotation is  
360 / N degrees. The predicted structure’s delta rise and delta rotation, 
relative to the ideal values, were rescaled logistically to yield values 
between 0 and 1, with midpoints at desirable delta values.

The logistic rescaling function used was:

1
1 + e−s(x−m))

Where s is the slope factor, x is the delta value, and m is the logistic 
scale midpoint. m and s for rotation were 4 and 1.5, respectively; those 
values for rise were 2 and 2, respectively. The mean between these 
rescaled values was used as a score for closure quality.

After generating initial pseudocycle scaffolds, we used  
ProteinMPNN10 to design the sequences as asymmetric monomeric 
proteins and used AF2 and RF to generate structural models for the 
new sequences.

Visual inspection of the ProteinMPNN-designed pseudocycle 
models suggested that many designed proteins had large areas of 
surface-apolar residues (Extended Data Fig. 2). To resolve this issue, 
we used the Rosetta sequence design suite17 to perform a redesign 
of the pseudocycles of their surface residues. For each pseudocycle 
model, we generated 100 sequences using ProteinMPNN10, and we 
used these newly generated sequences to generate a scaffold-specific 
Position Specific Score Matrix (PSSM) file. Using Rosetta sequence 
design (FastDesign), surface residues of the pseudocycle models with 
a high spatial aggregation propensity20 (SAP) score were selected, 
designed with the non-hydrophobic amino acid preference provided 
by the PSSM file, and scored with Rosetta metrics. These sequences 
were then used to predict new pseudocycle structures with AF2  
and RF. We chose to use the AF2 rank1 model (which had the highest 
plDDT of the five available AF2 models). We collected AF2 metrics, 
including plDDT and predicted Template Modeling score (pTM); 
RF metrics, including plDDT, categorical cross-entropy (CCE), and 
Kullback–Leibler divergence (KL divergence); and the r.m.s.d. of 
the predicted structure with respect to the original design model 
(Extended Data Fig. 3).

To generate the final pseudocycle list for further design applica-
tions, we examined Rosetta, AF2, and RF metrics, and visually inspected 
the models. We removed the models that were predicted to fold into 
scaffolds with a Cα r.m.s.d. over 2 Å by AF2 with respect to the original 
model, and generated a finalized pseudocycle list consisting of 21,021 
designed proteins.

The models of all 9,838 unique scaffolds and the sequences and the 
design models of the 96 characterized designs have been uploaded to 
GitHub (https://github.com/LAnAlchemist/Psedocycles_NSMB.git).

The scaffold-generation scripts have also been uploaded to GitHub 
(https://github.com/dmitropher/af2_multistate_hallucination.git).

TMalign method
We used PyRosetta21 to calculate the average TMscore between two 
input proteins by averaging the TMscore obtained when each of the PDB 
models was treated as the reference PDB model for sequence-length 
normalization.

TMalign to natives
We curated a set of high-resolution (<1.8 Å resolution) structures 
without sequence redundancy (using MMseq22) from the PDB, which 
yielded 6,111 structures. We then ran TMalign as previously described 
to find designs with similar native structures (see ‘TMalign method’ 
in Methods).

mTM-align of 96 characterized designs against the PDB
We used the mTM-align server23 to compare the designs we characte-
rized with the whole PDB, selecting the top database hit for TMalign 
comparison.

Protein clustering
All scaffolds were first grouped on the basis of their initial symmetry 
number (2–7), and were then grouped on the basis of their repeat-unit 
secondary structural assignment based on Define Secondary Structure 
of Proteins algorithum; we then applied AgglomerativeCluster (from 
scikit-learn24) on an all-by-all matrix of TMalign scores within each 
group. Cluster count was selected by checking the cluster statistics of 
various cluster sizes: the final cluster number was chosen by minimizing 
the proportion of clusters with less than two members (singletons) with 
respect to the joint constraints of maintaining a high mean TMscore 
within each cluster and a low s.d. of intra-cluster TMscores. The final 
clustering yielded a mean intra-group TMscore of 0.88 (not including 
singleton clusters), with only 9.42% singleton clusters.

Ligand docking to pseudocycles, NTF2, and native proteins
The pocket residues of pseudocycles were annotated using a Python 
script that identifies the largest internal cavity bound by the protein 
after converting the protein to polyalanine and then identifies all  
side chain residues contacting this internal cavity. The annotated pock-
ets of the randomly selected pseudocycles were checked manually to 
confirm that annotations were accurate. The scaffold and annotation 
of NTF2 pocket residues have been reported previously16. Previously 
verified native small-molecule-binding proteins were taken from the 
PDBBind database15. Only single-chain native small-molecule-binding 
proteins were selected to be comparable with pseudocycles. The bind-
ing pockets were selected on the basis of the annotation provided 
by PDBBind database. The native proteins were relaxed to remove 
protein side chain clashes with backbone and side chain constraints 
using Rosetta to remove clashes before any further computational 
experiments.

Nineteen ligands were used for visual docking and design experi-
ments: xanthurenic acid (4KL), morphine (MOI), lumiflavin (LFN), 
lenvatinib (LEV), cholic acid (CHD), fentanyl (7v7), dexamethasone 
(DEX), aspirin (AIN), fosfomycin (FCN), folic acid (FOL), methotrexate 
(MTX), diltiazem (D6C), dapsone (DSP), levofloxacin (LFX), ascorbic 
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acid (ASC), JQ1, phosphatidylserine (PS1), pyridoxal (PXL), and phos-
phatidylinositol 3-phosphate (PI1). The protonation states of all ligands 
were used when the pH was at 7.4.

The same procedure was used to dock all 19 ligands to pseudo-
cycles, NTF2, and native proteins. One to eight rotamers of each ligand 
were extracted from the PDB or Cambridge Structure Database25. 
Hydrogens were added to ligand rotamers using OpenBabel26 or VMD27 
with visual inspection. The conjugation and charge were edited or 
added with VMD or Chimera28 with visual inspection. The parameter 
file of the ligand was generated using the Python script from Rosetta 
application.

Rifgen/RIFdock suite13 was used to perform protein–ligand docking.  
Various amino acid rotamers (referred to as RIFs) that provide hypo-
thetical polar, aromatic, and apolar interactions to the ligand rota-
mer were generated for each ligand using the Rifgen function, with 
the requirement of polar interactions to all heavy atoms from the 
ligand rotamer. This requirement was dropped if the RIF was smaller 
than 1 MB, because RIFs of this size often do not yield meaningful  
docking data. The RIFs for each ligand, which encode the geometry 
and energy information for potential interactions between amino acid 
rotamers and ligand rotamers, were docked to pseudocycles, NTF2s, 
and native proteins at their annotated pocket residues using RIFdock. 
All remaining requirements to make polar interactions to ligand heavy 
atoms were kept during the docking procedure. For each protein scaf-
fold, a maximum of 30 docks was generated. At this step, for many of 
the protein scaffolds, the pocket failed to accommodate the ligand 
rotamer or to provide positions to hold the required interacting amino 
acid rotamers.

The generated docks were designed using the Rosetta sequence 
design suite to provide score terms to identify the most-suitable 
protein scaffolds for holding each ligand. Each generated dock 
was designed using a fast version of the fix-backbone sequence 
design procedure14. Previous studies have suggested that this version  
generates interface metrics that are highly correlated with scores 
generated using the slow version of the procedure, and thus it  
can be used to design large numbers of docks for selection of 
promising docks for binder design14. Interface metrics, including 
‘contact_molecular_surface’ and ‘ddG,’ were used to select the top 
percentile of binders for each ligand14. For the top 1% of these docks, 
scaffold-type origin was identified to determine which scaffold 
group (Fig. 4b,c, pseudocycle, NTF2, native protein) accommodated 
the widest array of ligands.

Expression and purification of selected proteins
All chemicals and supplies were purchased from Thermo Fisher  
Scientific unless specified otherwise.

Designs were reverse translated into DNA using a custom Python 
script that attempts to maximize host-specific codon adaptation 
index29 and Integrated DNA Technologies synthesizability, which 
includes optimizing whole-gene and local GC content as well as remov-
ing repetitive sequences, and ordered as Eblocks from IDT. Eblocks 
were cloned into a pET29b-derived vector with carboxy-terminal 
SNAC-cleavable His tags using Golden Gate assembly (New England 
Biolabs) and transformed into E. coli BL21 strain. The solubility of the 
proteins was first assessed using small-scale expression. One-milliliter 
cultures were grown in a round-bottom 96-deep-well plate covered 
with a breathable film and shaken at 270g overnight at room tem-
perature; the cultures were collected by centrifugation for 10 min 
at 4,000g and resuspended in bugbuster lysis buffer (1× bugbuster 
(Millipore), 25 mM Tris, 100 mM NaCl, pH 8). The lysed cells were 
spun down, and for each protein, 10 µL of clear supernatant was 
run on premade 15% SDS–PAGE gel (New England Biolabs) to check 
for protein in the soluble fraction. Protein bands in the expected 
molecular range were used to judge protein expression and solubility. 
Soluble designs were subsequently grown in 50 mL autoinduction 

medium in 250 mL baffled Erlenmeyer flasks for assay-scale produc-
tion (6 h at 37 °C followed by 24 h at 18 °C with shaking at 180 r.p.m. 
in New Brunswick Innova 44 shakers). Cells for each design culture 
were collected and resuspended in 30 mL of lysis buffer (25 mM Tris 
100 mM NaCl, pH 8, with protease inhibitor tablet) and were lysed 
sonication (3 min sonication, 10 s pulse, 10 s pause, 60% amplitude). 
After centrifugation for 30 min at 14,000g, soluble fractions were 
bound to 1 mL Ni-NTA resin (Qiagen) in a Econo-Pac gravity column 
(BIO-RAD) at 4 °C for 1 h with rotation. The resin was washed with  
20 column volumes (CV) of low-salt buffer (50 mM tris, 100 mM NaCl, 
50 mM imidazole, pH 8) and with 20 CV high-salt buffer (50 mM tris, 
1,000 mM NaCl, 50 mM Imidazole, pH 8).

For initial characterization using SEC (protocol 1) and CD, proteins 
were eluted with 2 CV of elution buffer (25 mM tris, 100 mM NaCl, 
500 mM Imidazole, pH 8) and purified on a superdex 75 increase 10/300 
GL column connected to ÄKTA protein purification systems in TBS 
buffer (25 mM Tris, 100 mM NaCl, pH 8).

For crystallography (protocol 2), the samples were treated as the 
same as that in protocol 1, except 4 to 8 flasks of 50 mL of culture were 
pooled together before sonication, and His tags were cleaved on beads 
(a.k.a. Ni-NTA resin), following the SNAC cleavage protocol30, before 
subsequent SEC purification.

For small-angle X-ray scattering (SAXS) studies, the samples 
were treated as above, except 4 flasks of 50 mL of culture were pooled 
together before sonication, and His tags were cleavaged on bead, fol-
lowing the SNAC cleavage protocol, before subsequent SEC purifica-
tion. The sample buffer was exchanged to 20 mM tris, 100 mM NaCl, 
and 2% glycerol (vol/vol) for SAXS studies.

Circular dichroism characterization of selected proteins
Circular dichroism spectra were measured with a Jasco J-1500 CD 
spectrometer. Samples were typically around 0.25 mg mL–1 (range 
0.1–0.5 mg mL–1) in 25 mM phosphate buffer, pH 8, and a cuvette with 
a path length of 1 mm was used. The CD signal was converted to mean 
residue ellipticity by dividing the raw spectra by N × C × L × 10, where 
N is the number of residues, C is the concentration of protein, and  
L is the path length (0.1 cm).

Crystallographic sample preparation and data analysis
Crystals were produced using the sitting drop vapor diffusion 
method. Drops with volumes of 200 nL in ratios of 1:1, 2:1, and 1:2 
(protein:crystallization) were placed in 96-well plates at 20 °C, using 
the Mosquito from SPT Labtech. Drops were monitored using the  
JANSi UVEX imaging system.

For E8, diffraction-quality crystals appeared in a mixture of 0.2 M 
dl-glutamic acid monohydrate, 0.2 M, dl-alanine, 0.2 M glycine, 0.2 M 
dl-lysine, 1.0 M imidazole, MES monohydrate (acid), and 37.5% vol/vol 
of 25% 2-methyl-2,4-pentanediol (MPD; vol/vol) and 25% PEG 1000 and 
25% PEG 3350 (wt/vol).

For H10, diffraction-quality crystals appeared in a mixture 
of 0.12 M d-glucose, 0.12 M d-mannose, 0.12 M d-galactose, 0.12 M 
l-fucose, 0.12 M d-xylose, 0.12 M N-acetyl-d-glucosamine, 0.0499 M 
HEPES, 0.0501 M MOPS (acid), 20% PEG 500 MME (vol/vol), and 10% 
PEG 20,000 (wt/vol).

For H12, diffraction-quality crystals appeared in a mixture of 
0.09 M sodium fluoride, 0.09 M sodium bromide, 0.09 sodium iodide, 
0.0499 M HEPES, 0.0501 M MOPS (acid), 12.5% MPD (vol/vol), 12.5% PEG 
1000, and 12.5% PEG 3350 (wt/vol).

Crystals were cryoprotected before being flash frozen in liquid 
nitrogen before being shipped for data collection at synchrotron. Data 
collection was performed with synchrotron radiation at the Advanced 
Photon Source (APS) on beamline 24ID-C.

X-ray intensities and data reduction were evaluated and inte-
grated using either XDS31 or HKL3000 (ref. 32) and merged and scaled 
using Pointless and Aimless in the CCP4 program suite33. Structure 
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determination and refinement starting phases were obtained by 
molecular replacement using Phaser34 using the design model for 
the structures. Following molecular replacement, the models were 
improved using Phenix autobuild35; efforts were made to reduce 
model bias by setting rebuild-in-place to false and using simulated 
annealing. Structures were refined in Phenix35. Model building  
was performed using COOT36. The final model was evaluated using 
MolProbity37. Data collection and refinement statistics are available 
in Table 1. Data deposition, atomic coordinates, and structure factors 
reported in this paper have been deposited in the PDB (8FJE for E8, 
8FJF for H10, and 8FJG for H12).

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
All data generated in our study have been made freely available. The 
raw data of SEC and SAXS have been provided. Coordinates and struc-
ture factors have been deposited in the Research Collaboratory for 
Structural Bioinformatics Protein Data Bank with the accession codes 
8FJF (H10), 8FJG (H12), and 8FJE (E8). The model of all 9,838 unique 
scaffolds and the sequences and the design models of the 96 charac-
terized designs have been uploaded to GitHub (https://github.com/
LAnAlchemist/Psedocycles_NSMB.git). The biochemical and biophysi-
cal characterization of the designs, structure prediction calculations, 
sequence analysis, and X-ray crystallography statistics are provided as 
Supplementary Figures and Tables.

Code availability
The Rosetta macromolecular modeling suite (http://www.rosettacom-
mons.org) is freely available to academic and non-commercial users. 
The scaffold-generation scripts were uploaded to github (https://
github.com/dmitropher/af2_multistate_hallucination.git).
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Extended Data Fig. 1 | The histograms of MCMC steps to convergence. The 
number of steps to closure for a representative sample of trajectories is shown 
here. Symmetric closure is defined as a ‘closure score’ of 0.1 or less. A clear trend 

is that AF2 readily predicts closed, cyclic structures from random repetitive 
sequences, but with very low confidence and quality until a rather large number 
of mutations.
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Extended Data Fig. 2 | Cartoons of exemplary designed pseudocycles from 
cyclic repeat protein hallucination showing per residue SAP and psipred 
scores before and after ProteinMPNN+Rosetta redesign. SAP score was 
improved during the final design step. a) 5 diverse representative proteins 
following the hallucination procedure colored by SAP score. Color scales from 
white (no aggregation propensity) to red (high aggregate propensity). b) The 
same 5 proteins after ProteinMPNN redesign and Rosetta surface optimization 

colored by SAP score. c) The same 5 hallucinated proteins colored by agreement 
of single sequence psipred prediction with the intended secondary structure. 
Color scales from white (perfect agreement) to red (no agreement). d) The 
redesigned proteins colored by agreement of single sequence psipred prediction 
with the intended secondary structure. e) Histogram of SAP score for original 
hallucinations (hal), after ProteinMPNN (mpnn) redesign, and after Rosetta 
surface optimization (sap_opt).
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Extended Data Fig. 3 | AF2 and RF metric histograms for 9838 pseudocycle cluster representatives. a). AF2 Ca-RMSD to design models for 5 AF2 models by AF2 
rank. b). AF2 plDDT for predictions. c). AF2 ptm for predictions. d). RosettaFold (RF) Ca-RMSD to design model, RF lddt, RF KL divergence, and RF CCE for predictions.
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Extended Data Fig. 4 | Diverse pseudocycle structures. Exemplary ɑ (a), β (b), and ɑ/β-containing (c) pseudocycles.
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Extended Data Fig. 5 | Our scaffold generation pipeline samples extensively 
of pseudocycle structural space, and the TMscore distribution of the 
designs coming from the pipeline to natives. a). We randomly constructed 
10 subsamples from our pool of design scaffolds (after removing structurally 
redundant models as described in Methods Protein Clustering) and recorded the 
number of models we found with TMScore of 0.45 or less to every other model 
in the pool. This represents models which are significantly different from every 

other model in the sample. Increased sample size shows that a smaller fraction of 
the models are structurally unique, this further implies that we have sampled the 
majority of the space available with this method. Central line shows median, box 
shows interquartile range, and whiskers show range, except for one outlier for the 
700 sample group, shown as a diamond. b). For each of our 9838 design cluster 
representatives, we computed the max average TMscore to native structures and 
plotted as a histogram.
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Extended Data Fig. 6 | CD data for 25 designs not shown in Fig. 2. Different 
temperatures of the CD scan spectra are plotted as follows: 25 °C in blue, 
55 °C in orange, 95 °C in pink, refolding at 25 °C in green. The cartoon of the 

corresponding designed pseudocycle is shown with each CD spectra. The 
sheet, helix, loop substructures are colored in magenta, teal, and dark blue, 
respectively.
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Extended Data Fig. 7 | The curves of ellipticity as a function of temperature for all designed pseudocycles with monomer fractions judged by SEC traces. 
Temperature-dependent CD scan suggested most de novo pseudocycles are highly stable.
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Extended Data Fig. 8 | SEC data for 25 designs not shown in Fig. 2. The SEC 
analysis performed using protocol2 were marked with a star (*) at its label. 
Monomeric fraction was marked out using a magenta star. The cartoon of 

the corresponding designed pseudocycle is shown with each subplot. The 
sheet, helix, loop substructures are colored in magenta, teal, and dark blue, 
respectively.
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Extended Data Fig. 9 | Small-angle X-ray scattering of selected pseudocyclic proteins. The volatility of ratio (vr) is marked and suggests monomeric distribution of 
all designs.
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Extended Data Fig. 10 | The pocket of design H12. The design of H12 were shown in cartoon and the interface residue side chains were shown in sticks. The electron 
density of the interface residues were shown in gray mesh.
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