Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Genomic instability

PARP1 and HPF1 team up to flag down DNA-repair machinery

The enzymatic activity of PARP1—which adds chains of (poly-ADP)-ribose (PAR) to proteins—initiates DNA repair by leading to more-accessible chromatin and recruitment of PAR-dependent DNA-repair proteins. New work shows that these PARP1-catalysed functions are redirected by the auxiliary factor HPF1 in cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HPF1 modulates PARylation at sites of DNA damage.
Fig. 2: HPF1-mediated PARylation of histones leads to chromatin expansion and increased recruitment of DNA-repair factors.

References

  1. Kraus, W. L. Mol. Cell 58, 902–910 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gibson, B. A. & Kraus, W. L. Nat. Rev. Mol. Cell Biol. 13, 411–424 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Bai, P. Mol. Cell 58, 947–958 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Suskiewicz, M. J., Palazzo, L., Hughes, R. & Ahel, I. FEBS J. 288, 2131–2142 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Spiegel, J. O., Van Houten, B. & Durrant, J. D. DNA Repair 103, 103125 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Teloni, F. & Altmeyer, M. Nucleic Acids Res. 44, 993–1006 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Gibbs-Seymour, I. et al. Mol. Cell 62, 432–442 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bonfiglio, J. J. et al. Mol. Cell 65, 932–940.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Palazzo, L. et al. eLife 7, e34334 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Crawford, K., Bonfiglio, J. J., Mikoč, A., Matic, I. & Ahel, I. Crit. Rev. Biochem. Mol. Biol. 53, 64–82 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Rudolph, J., Roberts, G., Muthurajan, U. M. & Luger, K. eLife 10, e65773 (2020).

    Article  Google Scholar 

  12. Suskiewicz, M. J. et al. Nature 579, 598–602 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun, F.-H. et al. Nat. Commun. 12, 1028 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Smith, R. et al. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-023-00977-x (2023).

Download references

Acknowledgements

Funding was provided by the National Cancer Institute (grant R01 CA218255 to K.L.) and by the Howard Hughes Medical Institute (to K.L.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Johannes Rudolph or Karolin Luger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudolph, J., Luger, K. PARP1 and HPF1 team up to flag down DNA-repair machinery. Nat Struct Mol Biol 30, 568–569 (2023). https://doi.org/10.1038/s41594-023-00987-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-023-00987-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing