Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Polγ coordinates DNA synthesis and proofreading to ensure mitochondrial genome integrity

Abstract

Accurate replication of mitochondrial DNA (mtDNA) by DNA polymerase γ (Polγ) is essential for maintaining cellular energy supplies, metabolism, and cell cycle control. To illustrate the structural mechanism for Polγ coordinating polymerase (pol) and exonuclease (exo) activities to ensure rapid and accurate DNA synthesis, we determined four cryo-EM structures of Polγ captured after accurate or erroneous incorporation to a resolution of 2.4–3.0 Å. The structures show that Polγ employs a dual-checkpoint mechanism to sense nucleotide misincorporation and initiate proofreading. The transition from replication to error editing is accompanied by increased dynamics in both DNA and enzyme, in which the polymerase relaxes its processivity and the primer–template DNA unwinds, rotates, and backtracks to shuttle the mismatch-containing primer terminus 32 Å to the exo site for editing. Our structural and functional studies also provide a foundation for analyses of Polγ mutation-induced human diseases and aging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cryo-EM reconstructions of human mtDNA Polγ ternary complexes.
Fig. 2: Locations of the primer and template in Polγ replication and proofreading complexes.
Fig. 3: Protein conformational changes associated with primer shuttling.
Fig. 4: Changes in DNA conformation and interaction with polymerase in the transition from replication to proofreading.
Fig. 5: DNA mismatch processing.
Fig. 6: Proposed two-phase Polγ replication–proofreading transition pathways.

Similar content being viewed by others

Data availability

Cryo-EM density maps and corresponding coordinates have been deposited in the Worldwide Protein Data Bank (PDB) OneDep System under the following accession codes: G-C replication complex (EMD-27154) (PDB 8D33), G•T R conformer (EMD-27155) (PDB 8D37), G•T I conformer (EMD-27163) (PDB 8D3R), and G•T E conformer (EMD-27172) (PDB 8D42). Accession codes for consensus and local refinement maps of the G•T E conformer are EMD-27169 (consensus), EMD-27170 (local refinement of subunit A and p/t DNA) and EMD-27171 (local refinement of subunit B).

References

  1. Robberson, D. L., Kasamatsu, H. & Vinograd, J. Replication of mitochondrial DNA. Circular replicative intermediates in mouse L cells. Proc. Natl Acad. Sci. USA 69, 737–741 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Berk, A. J. & Clayton, D. A. Mechanism of mitochondrial DNA replication in mouse L-cells: asynchronous replication of strands, segregation of circular daughter molecules, aspects of topology and turnover of an initiation sequence. J. Mol. Biol. 86, 801–824 (1974).

    Article  CAS  PubMed  Google Scholar 

  3. Lim, S. E., Longley, M. J. & Copeland, W. C. The mitochondrial p55 accessory subunit of human DNA polymerase γ enhances DNA binding, promotes processive DNA synthesis, and confers N-ethylmaleimide resistance. J. Biol. Chem. 274, 38197–38203 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Yin, Y. W. Structural insight on processivity, human disease and antiviral drug toxicity. Curr. Opin. Struct. Biol. 21, 83–91 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Lee, Y. S., Kennedy, W. D. & Yin, Y. W. Structural insights into human mitochondrial DNA replication and disease-related polymerase mutations. Cell 139, 312–324 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Szymanski, M. R. et al. Structural basis for processivity and antiviral drug toxicity in human mitochondrial DNA replicase. EMBO J. 34, 1959–1970 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sohl, C. D. et al. Probing the structural and molecular basis of nucleotide selectivity by human mitochondrial DNA polymerase γ. Proc. Natl Acad. Sci. USA 112, 8596–8601 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Johnson, A. A. & Johnson, K. A. Exonuclease proofreading by human mitochondrial DNA polymerase. J. Biol. Chem. 276, 38097–38107 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Lee, Y. S. et al. Each monomer of the dimeric accessory protein for human mitochondrial DNA polymerase has a distinct role in conferring processivity. J. Biol. Chem. 285, 1490–1499 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Wu, P., Nossal, N. & Benkovic, S. J. Kinetic characterization of a bacteriophage T4 antimutator DNA polymerase. Biochemistry 37, 14748–14755 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Reha-Krantz, L. J. Regulation of DNA polymerase exonucleolytic proofreading activity: studies of bacteriophage T4 ‘antimutator’ DNA polymerases. Genetics 148, 1551–1557 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hadjimarcou, M. I., Kokoska, R. J., Petes, T. D. & Reha-Krantz, L. J. Identification of a mutant DNA polymerase δ in Saccharomyces cerevisiae with an antimutator phenotype for frameshift mutations. Genetics 158, 177–186 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Foury, F. & Szczepanowska, K. Antimutator alleles of yeast DNA polymerase γ modulate the balance between DNA synthesis and excision. PLoS ONE 6, e27847 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee, Y. S., Johnson, K. A., Molineux, I. J. & Yin, Y. W. A single mutation in human mitochondrial DNA polymerase Pol γA affects both polymerization and proofreading activities of only the holoenzyme. J. Biol. Chem. 285, 28105–28116 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ferrari, G. et al. Infantile hepatocerebral syndromes associated with mutations in the mitochondrial DNA polymerase-γA. Brain 128, 723–731 (2005).

    Article  PubMed  Google Scholar 

  16. Trifunovic, A. et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417–423 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Bratic, A. et al. Complementation between polymerase- and exonuclease-deficient mitochondrial DNA polymerase mutants in genomically engineered flies. Nat. Commun. 6, 8808 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kunkel, T. A. & Alexander, P. S. The base substitution fidelity of eucaryotic DNA polymerases. Mispairing frequencies, site preferences, insertion preferences, and base substitution by dislocation. J. Biol. Chem. 261, 160–166 (1986).

    Article  CAS  PubMed  Google Scholar 

  19. Fortune, J. M. et al. Saccharomyces cerevisiae DNA polymerase δ: high fidelity for base substitutions but lower fidelity for single- and multi-base deletions. J. Biol. Chem. 280, 29980–29987 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Bebenek, A. et al. Interacting fidelity defects in the replicative DNA polymerase of bacteriophage RB69. J. Biol. Chem. 276, 10387–10397 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Wong, I., Patel, S. S. & Johnson, K. A. An induced-fit kinetic mechanism for DNA replication fidelity: direct measurement by single-turnover kinetics. Biochemistry 30, 526–537 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Johnson, A. A. & Johnson, K. A. Fidelity of nucleotide incorporation by human mitochondrial DNA polymerase. J. Biol. Chem. 276, 38090–38096 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Kimsey, I. J. et al. Dynamic basis for dG•dT misincorporation via tautomerization and ionization. Nature 554, 195–201 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. van Heel, M. & Schatz, M. Fourier shell correlation threshold criteria. J. Struct. Biol. 151, 250–262 (2005).

    Article  PubMed  Google Scholar 

  25. Freemont, P. S., Friedman, J. M., Beese, L. S., Sanderson, M. R. & Steitz, T. A. Cocrystal structure of an editing complex of Klenow fragment with DNA. Proc. Natl Acad. Sci. USA 85, 8924–8928 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xia, S., Wang, J. & Konigsberg, W. H. DNA mismatch synthesis complexes provide insights into base selectivity of a B family DNA polymerase. J. Am. Chem. Soc. 135, 193–202 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Wu, E. Y. & Beese, L. S. The structure of a high fidelity DNA polymerase bound to a mismatched nucleotide reveals an ‘ajar’ intermediate conformation in the nucleotide selection mechanism. J. Biol. Chem. 286, 19758–19767 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bebenek, K., Pedersen, L. C. & Kunkel, T. A. Replication infidelity via a mismatch with Watson–Crick geometry. Proc. Natl Acad. Sci. USA 108, 1862–1867 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lin, P. et al. Incorrect nucleotide insertion at the active site of a G:A mismatch catalyzed by DNA polymerase β. Proc. Natl Acad. Sci. USA 105, 5670–5674 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Seeman, N. C., Rosenberg, J. M. & Rich, A. Sequence-specific recognition of double helical nucleic acids by proteins. Proc. Natl Acad. Sci. USA 73, 804–808 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Berezhna, S. Y., Gill, J. P., Lamichhane, R. & Millar, D. P. Single-molecule Förster resonance energy transfer reveals an innate fidelity checkpoint in DNA polymerase I. J. Am. Chem. Soc. 134, 11261–11268 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hohlbein, J. et al. Conformational landscapes of DNA polymerase I and mutator derivatives establish fidelity checkpoints for nucleotide insertion. Nat. Commun. 4, 2131 (2013).

    Article  PubMed  Google Scholar 

  33. Hoekstra, T. P. et al. Switching between exonucleolysis and replication by T7 DNA polymerase ensures high fidelity. Biophys. J. 112, 575–583 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Reha-Krantz, L. J. DNA polymerase proofreading: multiple roles maintain genome stability. Biochim. Biophys. Acta 1804, 1049–1063 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Lamichhane, R., Berezhna, S. Y., Gill, J. P., Van der Schans, E. & Millar, D. P. Dynamics of site switching in DNA polymerase. J. Am. Chem. Soc. 135, 4735–4742 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dodd, T. et al. Polymerization and editing modes of a high-fidelity DNA polymerase are linked by a well-defined path. Nat. Commun. 11, 5379 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shamoo, Y. & Steitz, T. A. Building a replisome from interacting pieces: sliding clamp complexed to a peptide from DNA polymerase and a polymerase editing complex. Cell 99, 155–166 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Fernandez-Leiro, R. et al. Self-correcting mismatches during high-fidelity DNA replication. Nat. Struct. Mol. Biol. 24, 140–143 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dangerfield, T. L., Kirmizialtin, S. & Johnson, K. A. Substrate specificity and proposed structure of the proofreading complex of T7 DNA polymerase. J. Biol. Chem. 298, 101627 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, Y., Korolev, S. & Waksman, G. Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation. EMBO J. 17, 7514–7525 (1998).

    Article  CAS  Google Scholar 

  41. Doublie, S., Tabor, S., Long, A. M., Richardson, C. C. & Ellenberger, T. Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution. Nature 391, 251–258 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Beese, L. S., Derbyshire, V. & Steitz, T. A. Structure of DNA polymerase I Klenow fragment bound to duplex DNA. Science 260, 352–355 (1993).

    Article  CAS  PubMed  Google Scholar 

  43. Franklin, M. C., Wang, J. & Steitz, T. A. Structure of the replicating complex of a Pol α family DNA polymerase. Cell 105, 657–667 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Fernandez-Leiro, R., Conrad, J., Scheres, S. H. & Lamers, M. H. Cryo-EM structures of the E. coli replicative DNA polymerase reveal its dynamic interactions with the DNA sliding clamp, exonuclease and τ. eLife 4, e11134 (2015).

  45. Johnson, S. J. & Beese, L. S. Structures of mismatch replication errors observed in a DNA polymerase. Cell 116, 803–816 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Wang, W., Hellinga, H. W. & Beese, L. S. Structural evidence for the rare tautomer hypothesis of spontaneous mutagenesis. Proc. Natl Acad. Sci. USA 108, 17644–17648 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kasiviswanathan, R., Longley, M. J., Chan, S. S. & Copeland, W. C. Disease mutations in the human mitochondrial DNA polymerase thumb subdomain impart severe defects in mitochondrial DNA replication. J. Biol. Chem. 284, 19501–19510 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. González-Vioque, E. et al. Association of novel POLG mutations and multiple mitochondrial DNA deletions with variable clinical phenotypes in a Spanish population. Arch. Neurol. 63, 107–111 (2006).

    Article  PubMed  Google Scholar 

  49. Davidzon, G. et al. Early-onset familial parkinsonism due to POLG mutations. Ann. Neurol. 59, 859–862 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Wong, L. J. et al. Molecular and clinical genetics of mitochondrial diseases due to POLG mutations. Hum. Mutat. 29, E150–E172 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lamantea, E. et al. Mutations of mitochondrial DNA polymerase γA are a frequent cause of autosomal dominant or recessive progressive external ophthalmoplegia. Ann. Neurol. 52, 211–219 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Phillips, J. et al. POLG mutations presenting as Charcot–Marie–Tooth disease. J. Peripher. Nerv. Syst. 24, 213–218 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Horvath, R. et al. Phenotypic spectrum associated with mutations of the mitochondrial polymerase γ gene. Brain 129, 1674–1684 (2006).

    Article  PubMed  Google Scholar 

  54. Da Pozzo, P. et al. Novel POLG mutations and variable clinical phenotypes in 13 Italian patients. Neurol. Sci. 38, 563–570 (2017).

    Article  PubMed  Google Scholar 

  55. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Zivanov, J., Nakane, T. & Scheres, S. H. W. Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION-3.1. IUCrJ 7, 253–267 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Sanchez-Garcia, R. et al. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun. Biol. 4, 874 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kaur, S. et al. Local computational methods to improve the interpretability and analysis of cryo-EM maps. Nat. Commun. 12, 1240 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 75, 861–877 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cardone, G., Heymann, J. B. & Steven, A. C. One number does not fit all: mapping local variations in resolution in cryo-EM reconstructions. J. Struct. Biol. 184, 226–236 (2013).

    Article  PubMed  Google Scholar 

  63. Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Fan, L. et al. A novel processive mechanism for DNA synthesis revealed by structure, modeling and mutagenesis of the accessory subunit of human mitochondrial DNA polymerase. J. Mol. Biol. 358, 1229–1243 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Casañal, A., Lohkamp, B. & Emsley, P. Current developments in Coot for macromolecular model building of electron cryo-microscopy and crystallographic data. Protein Sci. 29, 1069–1078 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D Struct. Biol. 74, 519–530 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Pintilie, G. et al. Measurement of atom resolvability in cryo-EM maps with Q-scores. Nat. Methods 17, 328–334 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sagendorf, J. M., Markarian, N., Berman, H. M. & Rohs, R. DNAproDB: an expanded database and web-based tool for structural analysis of DNA–protein complexes. Nucleic Acids Res. 48, D277–D287 (2020).

    CAS  PubMed  Google Scholar 

  70. Pintilie, G., Chen, D. H., Haase-Pettingell, C. A., King, J. A. & Chiu, W. Resolution and probabilistic models of components in cryoEM maps of mature P22 bacteriophage. Biophys. J. 110, 827–839 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank W. Chiu for scientific and technical insights and helpful discussions, K.-Y. Wong for expert computational support and M. Mayer for preliminary data collection at the Stanford-SLAC Cryo-EM Center (S2C2) supported by the National Institutes of Health Common Fund (U24 GM129541). We thank M. Gagnon, P. Leiman and K. Kaus for critical reading of the manuscript. The work is supported by an NIH grant (R01 AI134611) to Y.W.Y., the James W. McLaughlin Fellowship Fund to J.P. and an endowment from the Sealy and Smith Foundation to the Sealy Center for Structural Biology and Molecular Biophysics at UTMB.

Author information

Authors and Affiliations

Authors

Contributions

Y.W.Y. and J.P. conceived the project. J.P., P.G.M., and M.B.S. collected cryo-EM data; J.P. performed data collection and structural determination; M.B.S. performed preliminary structural analyses. G.K.H. performed mutant Polγ activity assays. Y.W.Y. supervised the project. J.P. and Y.W.Y. wrote the first draft, and all authors contributed to the final manuscript.

Corresponding author

Correspondence to Y. Whitney Yin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks Maria Falkenberg, David P. Millar and R. Scott Williams for their contribution to the peer review of this work. Primary Handling Editors: Sara Osman and Dimitris Typas, in collaboration with the Nature Structural & Molecular Biology team. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Cryo-EM single-particle data processing pipeline for replication ternary complex.

a, Data were imported into cryoSPARC for 2D and 3D image analysis. See Methods for details. b, EM map of replication complex colored by local resolution estimated by cryoSPARC’s implementation of blocres at 0.5 FSC threshold and FSC resolution at 0.143 GSFSC threshold reported by cryoSPARC.

Extended Data Fig. 2 Cryo-EM single-particle data processing pipeline for proofreading ternary complex.

a, Data were imported into cryoSPARC for 2D and 3D image analysis. See Methods for details. b, EM map of proofreading E-conformer (Left), I-conformer (Middle), and R-conformer (Right) colored by local resolution estimated by cryoSPARC’s implementation of blocres at 0.5 FSC threshold and FSC resolution at 0.143 GSFSC threshold reported by cryoSPARC.

Extended Data Fig. 3 Superposition of G·C replication complex and G·T mismatch R-conformer in the pol active site.

Superposition of (a) DNA, catalytic residue (Asp1135), and RQH triad (Arg853Gln1102His1134), (b) trigger loop, and (c) catalytic loop and Fingers subdomain. G·C replication complex and G·T R-conformer are shown in transparent and light green, respectively. Primer strand is shown in pink, template strand in gray, and mismatched nucleoside in red. Overlay of primer-template base pair in the P-site with corresponding EM density in (d) G·C replication complex and in (e) G·T R-conformer. (f) Superposition of 3'-end of the primer in the pol active site of G·C replication complex (transparent) and G·T R-conformer (light green) showing the positioning of 3'-OH. Residues Asp890, Asp1135, Arg853, and His1134 as well as the incoming nucleotide, dCTP, are displayed.

Extended Data Fig. 4 Incoming nucleotide in Pol γ ternary complexes and dual fidelity checkpoint.

Incoming nucleotide dCTP is in the pol active site of (a) the replication complex and (b-d) proofreading complex. In R-conformers (a, b), dCTP forms W-C pair with the template but does not form any base pair in the I-conformer (c) and in the E-conformer (d). Electron density for dCTP and Ca2+ shown in light blue mesh. Proteins are colored based on their conformation, primer strand in pink, template strand in gray, and mismatched nucleoside in red. e, Scheme of DNA synthesis pathway. Fidelity checkpoint at pre- and post-nucleotide incorporation stages in Pol γ. In the N-site, where incoming nucleotide binds, Watson-Crick base checking first chooses the correct nucleotide triphosphate to incorporate. After the incorporation, Arg853 and Gln1102 checks the nascent base pair for correct Watson-Crick geometry.

Extended Data Fig. 5 Catalytic loop positioning and trigger loop interaction in Pol γ ternary complexes.

a–c, Comparison of catalytic loops between G·C replicating complex and G·T R-conformer (a), I-conformer (b), and G·T E-conformer (c). d–f, Detailed interaction between trigger loop and primer strand in R- (d), I- (e), and E-conformers (f). g–i, Superposition of trigger loops in three proofreading structures. Primer strand from R- (g), I- (h), and E- (i) conformers are shown.

Extended Data Fig. 6 Structural comparison of proofreading structures with apo Pol γ.

a-c, Superposition of Fingers subdomain (a), Thumb subdomain (b), and polymerase and exonuclease active sites (c) of proofreading structures and apo Pol γ (tan). Proofreading structures are colored according to conformation: R (light green), I (white), and E (light blue). d, Superimposed subunit interface of E-conformer and the apo enzyme.

Extended Data Fig. 7 DNA movement between conformational states in Pol γ.

a-c, Overall DNA movement associated with conformational changes are shown between R- and I- (a), I- and E- (b), and R- and E-conformers (c). d, Superposition of the primer strand in the correctly matched G·C replication complex and mismatch G·T E-conformer after superimposing the invariable exo active site, nucleoside n-5 is marked as a point of reference for comparison. e, Triangular primer 3′-end shuttling from the pol site to the exo site via an intermediate of the pathway. The primer moves 9.5 Å from R-conformer pol site to I-conformer and another 33.9 Å to the exo site in the E-conformer to shuttle between pol and exo sites that are 32.7 Å apart. Catalytic residues for pol (green) and exo (light blue) are shown.

Extended Data Fig. 8 DNA position in proofreading structures relative to exonuclease site and splitter helix.

Top (left) and 90° rotated (right) views of R- (a), I- (b), and E- (c) conformers. In R-conformer (a), DNA sits in polymerase active site and does not contact splitter helix. In I-conformer (b), DNA is lifted out of the polymerase active site, but does not reach the splitter helix. In E-conformer (c), DNA is completely out of the polymerase active site and is stabilized by the splitter helix at the fork junction.

Extended Data Fig. 9 Conserved mechanism of proofreading among different DNA polymerases.

a-d, Side-by-side comparison of polymerase active site of Pol γ G·C replication complex (a), Taq Klenow Fragment (PDB: 3KTQ) (b), RB69 DNA polymerase (PDB: 3NCI) (c), and Taq DNA polymerase III α subunit (PDB: 3E0D) (d) from A-,B-, and C-family DNA polymerases, respectively. e-h, Side-by-side comparison of DNA fork junction in Pol γ G·T E-conformer (e), E. coli Klenow Fragment (PDB: 1KLN) (f), RB69 DNA polymerase (PDB: 1CLQ) (g), and E. coli DNA polymerase III (PDB: 5M1S) (h) from A-,B-, and C-family DNA polymerases, respectively.

Supplementary information

Reporting Summary

Peer Review File

Supplementary Video 1

Fingers subdomain movement during the replication–proofreading transition.

Supplementary Video 2

Conformational changes of the trigger loop.

Supplementary Video 3

Structural changes in the subdomain interface and DNA.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Herrmann, G.K., Mitchell, P.G. et al. Polγ coordinates DNA synthesis and proofreading to ensure mitochondrial genome integrity. Nat Struct Mol Biol 30, 812–823 (2023). https://doi.org/10.1038/s41594-023-00980-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-023-00980-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing