Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanism of RecF–RecO–RecR cooperation in bacterial homologous recombination

Abstract

In bacteria, one type of homologous-recombination-based DNA-repair pathway involves RecFOR proteins that bind at the junction between single-stranded (ss) and double-stranded (ds) DNA. They facilitate the replacement of SSB protein, which initially covers ssDNA, with RecA, which mediates the search for homologous sequences. However, the molecular mechanism of RecFOR cooperation remains largely unknown. We used Thermus thermophilus proteins to study this system. Here, we present a cryo-electron microscopy structure of the RecF–dsDNA complex, and another reconstruction that shows how RecF interacts with two different regions of the tetrameric RecR ring. Lower-resolution reconstructions of the RecR–RecO subcomplex and the RecFOR–DNA assembly explain how RecO is positioned to interact with ssDNA and SSB, which is proposed to lock the complex on a ssDNA–dsDNA junction. Our results integrate the biochemical data available for the RecFOR system and provide a framework for its complete understanding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overall structures of complexes of RecFOR proteins with DNA.
Fig. 2: RecF–DNA interactions in RecF–DNA and RecFR–DNA complexes.
Fig. 3: RecF–RecR interfaces.
Fig. 4: Biochemical validation of the contacts within RecFOR–DNA complexes.
Fig. 5: Structure of the RecFOR–DNA complex.

Similar content being viewed by others

Data availability

Atomic models are available in the Protein Data Bank (PDB) under the accession codes 8A8J (RecF–DNA), 8A93 (RecFR–DNA), 8AB0 (RecOR–DNA) and 8BPR (RecFOR–DNA). The corresponding cryo-EM reconstructions are available in the EM Data Bank under the accession codes EMD-15231, EMD-15267, EMD-15308 and EMD-16164. This study also used publicly available models of Rec proteins with the following PDB accession codes: 5Z68, 5ZVQ, 4JCV and 5Z2V. The raw data for fluorescence anisotropy, pull-down assays, glycerol gradient sedimentation and fourier-transform infrared spectroscopy have been uploaded in public repository on the Zenodo website (accession number 7515083). Source data are provided with this paper.

References

  1. Kowalczykowski, S. C. An overview of the molecular mechanisms of recombinational DNA repair. Cold Spring Harb. Perspect. Biol. 7, a016410 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Li, X. & Heyer, W. D. Homologous recombination in DNA repair and DNA damage tolerance. Cell Res. 18, 99–113 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Kowalczykowski, S. C. & Eggleston, A. K. Homologous pairing and DNA strand-exchange proteins. Annu. Rev. Biochem. 63, 991–1043 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Rocha, E. P., Cornet, E. & Michel, B. Comparative and evolutionary analysis of the bacterial homologous recombination systems. PLoS Genet. 1, e15 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lloyd, R. G., Buckman, C. & Benson, F. E. Genetic analysis of conjugational recombination in Escherichia coli K12 strains deficient in RecBCD enzyme. J. Gen. Microbiol. 133, 2531–2538 (1987).

    CAS  PubMed  Google Scholar 

  6. Morimatsu, K. & Kowalczykowski, S. C. RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: a universal step of recombinational repair. Mol. Cell 11, 1337–1347 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Webb, B. L., Cox, M. M. & Inman, R. B. Recombinational DNA repair: the RecF and RecR proteins limit the extension of RecA filaments beyond single-strand DNA gaps. Cell 91, 347–356 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Whitby, M. C. & Lloyd, R. G. Altered SOS induction associated with mutations in recF, recO and recR. Mol. Gen. Genet. 246, 174–179 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Kolodner, R., Fishel, R. A. & Howard, M. Genetic recombination of bacterial plasmid DNA: effect of RecF pathway mutations on plasmid recombination in Escherichia coli. J. Bacteriol. 163, 1060–1066 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Smith, K. C., Wang, T. V. & Sharma, R. C. recA-dependent DNA repair in UV-irradiated Escherichia coli. J. Photochem. Photobiol. B 1, 1–11 (1987).

    Article  CAS  PubMed  Google Scholar 

  11. Harmon, F. G. & Kowalczykowski, S. C. RecQ helicase, in concert with RecA and SSB proteins, initiates and disrupts DNA recombination. Genes Dev. 12, 1134–1144 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lovett, S. T. & Kolodner, R. D. Identification and purification of a single-stranded-DNA-specific exonuclease encoded by the recJ gene of Escherichia coli. Proc. Natl Acad. Sci. U S A 86, 2627–2631 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cheng, K. et al. Structural basis for DNA 5′-end resection by RecJ. eLife 5, e14294 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Handa, N., Morimatsu, K., Lovett, S. T. & Kowalczykowski, S. C. Reconstitution of initial steps of dsDNA break repair by the RecF pathway of E. coli. Genes Dev. 23, 1234–1245 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Morimatsu, K., Wu, Y. & Kowalczykowski, S. C. RecFOR proteins target RecA protein to a DNA gap with either DNA or RNA at the 5′ terminus: implication for repair of stalled replication forks. J. Biol. Chem. 287, 35621–35630 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Umezu, K., Chi, N. W. & Kolodner, R. D. Biochemical interaction of the Escherichia coli RecF, RecO, and RecR proteins with RecA protein and single-stranded DNA binding protein. Proc. Natl Acad. Sci. U S A 90, 3875–3879 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Umezu, K. & Kolodner, R. D. Protein interactions in genetic recombination in Escherichia coli. Interactions involving RecO and RecR overcome the inhibition of RecA by single-stranded DNA-binding protein. J. Biol. Chem. 269, 30005–30013 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Inoue, J., Honda, M., Ikawa, S., Shibata, T. & Mikawa, T. The process of displacing the single-stranded DNA-binding protein from single-stranded DNA by RecO and RecR proteins. Nucleic Acids Res. 36, 94–109 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Sakai, A. & Cox, M. M. RecFOR and RecOR as distinct RecA loading pathways. J. Biol. Chem. 284, 3264–3272 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pelaez, A. I., Ribas-Aparicio, R. M., Gomez, A. & Rodicio, M. R. Structural and functional characterization of the recR gene of Streptomyces. Mol. Genet. Genomics 265, 663–672 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Honda, M., Fujisawa, T., Shibata, T. & Mikawa, T. RecR forms a ring-like tetramer that encircles dsDNA by forming a complex with RecF. Nucleic Acids Res. 36, 5013–5020 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Radzimanowski, J. et al. An ‘open’ structure of the RecOR complex supports ssDNA binding within the core of the complex. Nucleic Acids Res. 41, 7972–7986 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Webb, B. L., Cox, M. M. & Inman, R. B. An interaction between the Escherichia coli RecF and RecR proteins dependent on ATP and double-stranded DNA. J. Biol. Chem. 270, 31397–31404 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Honda, M. et al. Identification of the RecR Toprim domain as the binding site for both RecF and RecO. A role of RecR in RecFOR assembly at double-stranded DNA-single-stranded DNA junctions. J. Biol. Chem. 281, 18549–18559 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Hegde, S. P. et al. Interactions of RecF protein with RecO, RecR, and single-stranded DNA binding proteins reveal roles for the RecF–RecO–RecR complex in DNA repair and recombination. Proc. Natl Acad. Sci. U S A 93, 14468–14473 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee, B. I. et al. Crystallization and preliminary X-ray crystallographic analysis of the RecR protein from Deinococcus radiodurans, a member of the RecFOR DNA-repair pathway. Acta Crystallogr D. Biol. Crystallogr. 60, 379–381 (2004).

    Article  PubMed  Google Scholar 

  27. Tang, Q., Liu, Y. P., Yan, X. X. & Liang, D. C. Structural and functional characterization of Cys4 zinc finger motif in the recombination mediator protein RecR. DNA Repair 24, 10–14 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Tang, Q. et al. RecOR complex including RecR N-N dimer and RecO monomer displays a high affinity for ssDNA. Nucleic Acids Res. 40, 11115–11125 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Che, S., Chen, Y., Liang, Y., Zhang, Q. & Bartlam, M. Crystal structure of RecR, a member of the RecFOR DNA-repair pathway, from Pseudomonas aeruginosa PAO1. Acta Crystallogr. Sect. F Struct. Biol. Commun. 74, 222–230 (2018).

    Article  CAS  Google Scholar 

  30. Chaudhary, S. K., Elayappan, M., Jeyakanthan, J. & Kanagaraj, S. Structural and functional characterization of oligomeric states of proteins in RecFOR pathway. Int. J. Biol. Macromol. 163, 943–953 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Timmins, J., Leiros, I. & McSweeney, S. Crystal structure and mutational study of RecOR provide insight into its mode of DNA binding. EMBO J. 26, 3260–3271 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shinn, M. K., Kozlov, A. G. & Lohman, T. M. Allosteric effects of SSB C-terminal tail on assembly of E. coli RecOR proteins. Nucleic Acids Res. 49, 1987–2004 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Koroleva, O., Makharashvili, N., Courcelle, C. T., Courcelle, J. & Korolev, S. Structural conservation of RecF and Rad50: implications for DNA recognition and RecF function. EMBO J. 26, 867–877 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Leiros, I., Timmins, J., Hall, D. R. & McSweeney, S. Crystal structure and DNA-binding analysis of RecO from Deinococcus radiodurans. EMBO J. 24, 906–918 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Makharashvili, N., Koroleva, O., Bera, S., Grandgenett, D. P. & Korolev, S. A novel structure of DNA repair protein RecO from Deinococcus radiodurans. Structure 12, 1881–1889 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Luisi-DeLuca, C. & Kolodner, R. Purification and characterization of the Escherichia coli RecO protein. Renaturation of complementary single-stranded DNA molecules catalyzed by the RecO protein. J. Mol. Biol. 236, 124–138 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Bork, J. M., Cox, M. M. & Inman, R. B. The RecOR proteins modulate RecA protein function at 5′ ends of single-stranded DNA. EMBO J. 20, 7313–7322 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Webb, B. L., Cox, M. M. & Inman, R. B. ATP hydrolysis and DNA binding by the Escherichia coli RecF protein. J. Biol. Chem. 274, 15367–15374 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Makharashvili, N., Mi, T., Koroleva, O. & Korolev, S. RecR-mediated modulation of RecF dimer specificity for single- and double-stranded DNA. J. Biol. Chem. 284, 1425–1434 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tang, Q. et al. ATP-dependent conformational change in ABC-ATPase RecF serves as a switch in DNA repair. Sci. Rep. 8, 2127 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Griffin, T. J. T. & Kolodner, R. D. Purification and preliminary characterization of the Escherichia coli K-12 RecF protein. J. Bacteriol. 172, 6291–6299 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Madiraju, M. V. & Clark, A. J. Evidence for ATP binding and double-stranded DNA binding by Escherichia coli RecF protein. J. Bacteriol. 174, 7705–7710 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hegde, S. P., Rajagopalan, M. & Madiraju, M. V. Preferential binding of Escherichia coli RecF protein to gapped DNA in the presence of adenosine (gamma-thio) triphosphate. J. Bacteriol. 178, 184–190 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stark, H. GraFix: stabilization of fragile macromolecular complexes for single particle cryo-EM. Methods Enzymol. 481, 109–126 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Shan, Q., Bork, J. M., Webb, B. L., Inman, R. B. & Cox, M. M. RecA protein filaments: end-dependent dissociation from ssDNA and stabilization by RecO and RecR proteins. J. Mol. Biol. 265, 519–540 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Lusetti, S. L. et al. The RecF protein antagonizes RecX function via direct interaction. Mol. Cell 21, 41–50 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hobbs, M. D., Sakai, A. & Cox, M. M. SSB protein limits RecOR binding onto single-stranded DNA. J. Biol. Chem. 282, 11058–11067 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Inoue, J. et al. A mechanism for single-stranded DNA-binding protein (SSB) displacement from single-stranded DNA upon SSB–RecO interaction. J. Biol. Chem. 286, 6720–6732 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Ryzhikov, M., Koroleva, O., Postnov, D., Tran, A. & Korolev, S. Mechanism of RecO recruitment to DNA by single-stranded DNA binding protein. Nucleic Acids Res. 39, 6305–6314 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nam, K. H., Kurinov, I. & Ke, A. Crystal structure of clustered regularly interspaced short palindromic repeats (CRISPR)-associated Csn2 protein revealed Ca2+-dependent double-stranded DNA binding activity. J. Biol. Chem. 286, 30759–30768 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wagner, T. et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2, 218 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Stein, N. CHAINSAW: a program for mutating pdb files used as templates in molecular replacement. J. Appl. Crystallogr. 41, 641–643 (2008).

    Article  CAS  Google Scholar 

  59. Schwarzenbacher, R., Godzik, A., Grzechnik, S. K. & Jaroszewski, L. The importance of alignment accuracy for molecular replacement. Acta Crystallogr. D Biol. Crystallogr. 60, 1229–1236 (2004).

    Article  PubMed  Google Scholar 

  60. Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jakobi, A. J., Wilmanns, M. & Sachse, C. Model-based local density sharpening of cryo-EM maps. eLife 6, e27131 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tan, Y. Z. et al. Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat. Methods 14, 793–796 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Pei, J., Kim, B. H. & Grishin, N. V. PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Res. 36, 2295–2300 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank W. Yang for critically reading the manuscript and M. Arends for proofreading the manuscript. This work was financed by the MAESTRO grant from the National Science Center, Poland (2017/26/A/NZ1/01098). This publication was developed under the provision of the Polish Ministry of Education and Science project, ‘Support for research and development with the use of research infrastructure of the National Synchrotron Radiation Centre SOLARIS,’ under contract no. 1/SOL/2021/2. We acknowledge the SOLARIS Centre for access to the cryo-EM Beamline, where the measurements were performed.

Author information

Authors and Affiliations

Authors

Contributions

S.N. prepared the cryo-EM sample and solved the structure of the RecFOR–DNA complexes. S.N. and M.C.-C. analyzed cryo-EM data. A.C. and W.Z. purified proteins. S.N. performed biochemical studies. K.S. performed biophysical protein characterization. S.C. and M.F. performed initial protein production. S.N., M.C.-C. and M.N. wrote the manuscript.

Corresponding author

Correspondence to Marcin Nowotny.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks Michael Cox and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Florian Ullrich and Dimitris Typas, in collaboration with the Nature Structural & Molecular Biology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Cryo-EM data processing.

(a) Three-dimensional reconstruction pipeline, showing initial processing steps (pre-processing, particle picking, and initial 3D classification). (b) Representative cryo-EM micrograph (out of 7,217 collected). (c) Representative 2D classes for RecF-DNA particles. (d) Representative 2D classes for RecFOR-DNA particles.

Extended Data Fig. 2 Three-dimensional reconstruction pipeline and quality of cryo-EM maps.

(a) RecF-DNA, (b) RecF-RecR-DNA, (c) RecO-RecR-DNA, and (d) RecF-RecO-RecR-DNA. (e) Top: gold-standard Fourier Shell Correlation (FSC) curves between two half maps, model-to-map FSC curves, and histograms of directional FSC (calculated by the 3DFSC web-server64). Horizontal lines represent a value of 0.143. Bottom: viewing direction distribution graphs. (fi) Local resolution calculated from half maps in cryoSPARC for RecF-DNA (f), RecF-RecR-DNA (g), RecO-RecR-DNA (h) and RecF-RecO-RecR-DNA (i) reconstructions.

Extended Data Fig. 3 Overall structure of RecF-DNA complex and comparison with the crystal structure.

(a) High-resolution cryo-EM potential map of RecF-DNA complex. The two RecF protomers are displayed as orange and dark pink, and DNA is in white. (b) Two views of the RecF-DNA complex shown in cartoon representation. The color scheme is the same as in (a). The DNA is in black. (c) Side view of superposition of RecF structures. RecF-RecR-DNA reconstruction (present study) is shown in yellow/sand for RecF and purple/cyan/pink for RecR. The DNA is in black. RecF structure from RecF-DNA reconstruction (present study) is shown in same color scheme as in (a). The apo RecF structure (PDB ID: 5Z68) is shown in green. The proteins were superimposed using the ATPase domains and are shown in wire representation. The helical clamp is shown in cartoon representation. (d) Bottom view of superposition of RecF structures to show the difference in clamp placement. The color scheme is the same as in (c).

Extended Data Fig. 4 Quality of cryo-EM maps and model-to-map fits.

(a) RecF-DNA with close-up views of the selected secondary structures. (b) RecFR-DNA with close-up views of the DNA (left) and the interface between RecF and RecR proteins. (c) RecOR-DNA with close-up views of the selected parts of the model. (d) RecFOR-DNA with close-up views of the selected parts of the model. High resolution models (RecF, DNA, and part of RecR) are shown in wire and stick and lower-resolution models (RecO and RecR) are in cartoon representation.

Extended Data Fig. 5 Multiple sequence alignment of RecF protein.

Sequences aligned with Promals3D66. Residues in cyan are involved in DNA binding. Residues in gray are involved in RecR binding.

Extended Data Fig. 6 Multiple sequence alignment of RecR protein.

Sequences aligned with Promals3D66. Residues in gray are involved in RecF binding.

Extended Data Fig. 7 Comparison of RecR structures.

(a) Crystal structure of Tt-RecR (PDB ID: 5ZVQ) in surface representation, with a cartoon of tetramer formation. (b) Structures of RecR rings shown in the same orientation after they were superimposed using cyan, yellow, and green chains (marked with asterisk) from each structure.

Extended Data Fig. 8 Modeling of the complete RecR ring.

The flexible RecR protomer that was only partially visible in the cryo-EM reconstruction was modeled by superimposing the crystal structure of the Tt-RecR monomer (PDB ID: 5ZVQ) on the incomplete RecR subunit of the RecFOR-DNA model using N-terminal HhH motifs. The modeled RecR chain is shown in lightblue. (a) RecF in surface representation and RecR as cartoon. (b) Two views with RecR in surface representation. RecO has been omitted for clarity.

Extended Data Fig. 9 Secondary structure content and structural integrity of RecF and RecR tryptophan variants.

Fourier-transform infrared spectra of RecF wildtype (WT), RecF A170W, RecR WT, and RecR A147W are shown.

Extended Data Fig. 10 Control experiments for the glycerol density gradient sedimentation analysis of RecFOR proteins in the presence of 3′ overhang dsDNA.

Silver-stained SDS-PAGE analysis of the fractions from the control experiments are shown. Fractions from low to high molecular weight were analyzed and their numbers are given on the top of the gels. The proteins used in each experiment are indicated on the left of each gel. Each experiment was repeated three times. ‘M’ lane shows the loading control. The gel at the top shows standard protein ruler and loading control. RecF, RecO and RecR proteins were applied in 2:1:4 molar ratio in loading controls.

Source data

Supplementary information

Reporting Summary

Supplementary Table

List of the primers used for cloning and mutagenesis.

Source data

Source Data Fig. 4

Uncropped gels used for Figs. 4a,b (quantification),g,h.

Source Data Fig. 4

Densitometry results for the SDS–PAGE analysis of RecF–RecR pull-down fractions.

Source Data Extended Data Fig. 10

Uncropped gels.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nirwal, S., Czarnocki-Cieciura, M., Chaudhary, A. et al. Mechanism of RecF–RecO–RecR cooperation in bacterial homologous recombination. Nat Struct Mol Biol 30, 650–660 (2023). https://doi.org/10.1038/s41594-023-00967-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-023-00967-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing