Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mapping the conformational landscape of the stimulatory heterotrimeric G protein

Abstract

Heterotrimeric G proteins serve as membrane-associated signaling hubs, in concert with their cognate G-protein-coupled receptors. Fluorine nuclear magnetic resonance spectroscopy was employed to monitor the conformational equilibria of the human stimulatory G-protein α subunit (Gsα) alone, in the intact Gsαβ1γ2 heterotrimer or in complex with membrane-embedded human adenosine A2A receptor (A2AR). The results reveal a concerted equilibrium that is strongly affected by nucleotide and interactions with the βγ subunit, the lipid bilayer and A2AR. The α1 helix of Gsα exhibits significant intermediate timescale dynamics. The α4β6 loop and α5 helix undergo membrane/receptor interactions and order–disorder transitions respectively, associated with G-protein activation. The αN helix adopts a key functional state that serves as an allosteric conduit between the βγ subunit and receptor, while a significant fraction of the ensemble remains tethered to the membrane and receptor upon activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Labeling sites for probing the conformational landscape of Gsα.
Fig. 2: Chosen labeling sites are allosterically engaged with the nucleotide binding pocket.
Fig. 3: Gsα reveals a complex landscape characterized by both global and local conformational dynamics.
Fig. 4: Distinct conformational signatures are observed for the N-terminal helix in the combined presence of Gβγ and A2AR.
Fig. 5: Hinge region connecting the RHD and the AHD undergoes order-disorder transitions upon nucleotide release.
Fig. 6: Y358C exhibits chemical shift sensitivity toward nucleotide.
Fig. 7: Gsαβγ heterotrimer undergoes structural rearrangement rather than complete physical dissociation in the presence of GDP-[AlF4] and GTPγS.
Fig. 8: ‘Open’ conformation of Gsα is stabilized by membrane and Gβγ.

Similar content being viewed by others

Data availability

Source data are available on Figshare: https://doi.org/10.6084/m9.figshare.21733997.v2. Source data are provided with this paper.

References

  1. Traut, T. W. Physiological concentrations of purines and pyrimidines. Mol. Cell. Biochem. 140, 1–22 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Dror, R. O. et al. Structural basis for nucleotide exchange in heterotrimeric G proteins. Science 348, 1361–1365 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Van Eps, N. et al. Interaction of a G protein with an activated receptor opens the interdomain interface in the alpha subunit. Proc. Natl Acad. Sci. USA 108, 9420–9424 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chung, K. Y. et al. Conformational changes in the G protein Gs induced by the β2 adrenergic receptor. Nature 477, 611–617 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Westfield, G. H. et al. Structural flexibility of the Gαs α-helical domain in the β2-adrenoceptor Gs complex. Proc. Natl Acad. Sci. USA 108, 16086–16091 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu, X. et al. Structural insights into the process of GPCR-G protein complex formation. Cell 177, 1243–1251.e12 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rasmussen, S. G. F. et al. Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature 477, 549–555 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sunahara, R. K., Tesmer, J. J. G., Gilman, A. G. & Sprang, S. R. Crystal structure of the adenylyl cyclase activator G(sα). Science 278, 1943–1947 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Qi, C., Sorrentino, S., Medalia, O. & Korkhov, V. M. The structure of a membrane adenylyl cyclase bound to an activated stimulatory G protein. Science 364, 389–394 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Toyama, Y. et al. Dynamic regulation of GDP binding to G proteins revealed by magnetic field-dependent NMR relaxation analyses. Nat. Commun. 8, 14523 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Goricanec, D. et al. Conformational dynamics of a G-protein α subunit is tightly regulated by nucleotide binding. Proc. Natl Acad. Sci. USA 113, E3629–E3638 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Smrcka, A. V. et al. NMR analysis of G-protein βγ subunit complexes reveals a dynamic Gα-Gβγ subunit interface and multiple protein recognition modes. Proc. Natl Acad. Sci. USA 107, 639–644 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Abdulaev, N. G. et al. The receptor-bound ‘empty pocket’ state of the heterotrimeric G-protein α-subunit is conformationally dynamic. Biochemistry 45, 12986–12997 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Ridge, K. D. et al. Conformational changes associated with receptor-stimulated guanine nucleotide exchange in a heterotrimeric G-protein α-subunit: NMR analysis of GTPγS-bound states. J. Biol. Chem. 281, 7635–7648 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Abdulaev, N. G. et al. Heterotrimeric G-protein α-subunit adopts a ‘preactivated’ conformation when associated with βγ-subunits. J. Biol. Chem. 280, 38071–38080 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Knight, K. M. et al. A universal allosteric mechanism for G protein activation. Mol. Cell 81, 1384–1396.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Goricanec, D. & Hagn, F. NMR backbone and methyl resonance assignments of an inhibitory G-alpha subunit in complex with GDP. Biomol. NMR Assign. 13, 131–137 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Medkova, M., Preininger, A. M., Yu, N. J., Hubbell, W. L. & Hamm, H. E. Conformational changes in the amino-terminal helix of the G protein αi1 following dissociation from Gβγ subunit and activation. Biochemistry 41, 9962–9972 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Herrmann, R., Heck, M., Henklein, P., Hofmann, K. P. & Ernst, O. P. Signal transfer from GPCRs to G proteins: role of the Gα N-terminal region in rhodopsin-transducin coupling. J. Biol. Chem. 281, 30234–30241 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Danielson, M. A. & Falke, J. J. Use of 19F NMR to probe protein structure and conformational changes. Annu. Rev. Biophys. Biomol. Struct. 25, 163–195 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kaya, A. I. et al. A conserved phenylalanine as a relay between the α5 helix and the GDP binding region of heterotrimeric Gi protein α subunit. J. Biol. Chem. 289, 24475–24487 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hu, J. et al. Structural basis of G protein–coupled receptor–G protein interactions. Nat. Chem. Biol. 6, 541–548 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Johnston, C. A., Willard, M. D., Kimple, A. J., Siderovski, D. P. & Willard, F. S. A sweet cycle for Arabidopsis G-proteins: recent discoveries and controversies in plant G-protein signal transduction. Plant Signal. Behav. 3, 1067–1076 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Iiri, T. et al. Rapid GDP release from Gs alpha in patients with gain and loss of endocrine function. Nature 371, 164–168 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Posner, B. A., Mixon, M. B., Wall, M. A., Gilman, A. G. & Sprang, S. R. The A326S mutant of Gialpha1 as an approximation of the receptor-bound state. J. Biol. Chem. 273, 21752–21758 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Thomas, T. C., Schmidt, C. J. & Neer, E. J. G-protein alpha o subunit: mutation of conserved cysteines identifies a subunit contact surface and alters GDP affinity. Proc. Natl Acad. Sci. USA 90, 10295–10299 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tsutsumi, R. et al. Identification of G protein alpha subunit-palmitoylating enzyme. Mol. Cell. Biol. 29, 435–447 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Linder, M. E. et al. Lipid modifications of G proteins: alpha subunits are palmitoylated. Proc. Natl Acad. Sci. USA 90, 3675–3679 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kleuss, C. & Krause, E. Gas is palmitoylated at the N-terminal glycine. EMBO J. 22, 826–832 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Oldham, W. M., Van Eps, N., Preininger, A. M., Hubbell, W. L. & Hamm, H. E. Mechanism of the receptor-catalyzed activation of heterotrimeric G proteins. Nat. Struct. Mol. Biol. 13, 772–777 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Sljoka, A. Probing allosteric mechanism with long-range rigidity transmission across protein networks. Methods Mol. Biol. 2253, 61–75 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Jacobs, D. J., Rader, A. J., Kuhn, L. A. & Thorpe, M. F. Protein flexibility predictions using graph theory. Proteins Struct. Funct. Genet. 44, 150–165 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Huang, S. K. et al. Delineating the conformational landscape of the adenosine A2A receptor during G protein coupling. Cell 184, 1884–1894.e14 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Coleman, D. E. & Sprang, S. R. Crystal structures of the G Protein Giα1 complexed with GDP and Mg2+: a crystallographic titration experiment. Biochemistry 37, 14376–14385 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Sykes, B. D., Weingarten, H. I. & Schlesinger, M. J. Fluorotyrosine alkaline phosphatase from Escherichia coli: preparation, properties, and fluorine-19 nuclear magnetic resonance spectrum. Proc. Natl Acad. Sci. USA 71, 469–473 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kitevski-LeBlanc, J. L., Evanics, F. & Prosser, R. S. Approaches for the measurement of solvent exposure in proteins by 19F NMR. J. Biomol. NMR 45, 255–264 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. García-Nafría, J., Lee, Y., Bai, X., Carpenter, B. & Tate, C. G. Cryo-EM structure of the adenosine A2A receptor coupled to an engineered heterotrimeric G protein. eLife 7, 1–19 (2018).

    Article  Google Scholar 

  38. Flock, T. et al. Universal allosteric mechanism for Gα activation by GPCRs. Nature 524, 173–179 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim, K. et al. 2-adrenoceptor ligand efficacy is tuned by a two-stage interaction with the Gαs C terminus. Proc. Natl Acad. Sci. USA 118, 1–11 (2021).

    Google Scholar 

  40. Du, Y. et al. Assembly of a GPCR-G protein complex. Cell 177, 1232–1242.e11 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hamm, H. E. The many faces of G protein signaling. J. Biol. Chem. 273, 669–672 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Digby, G. J., Sethi, P. R. & Lambert, N. A. Differential dissociation of G protein heterotrimers. J. Physiol. 586, 3325–3335 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hillenbrand, M., Schori, C., Schöppe, J. & Plückthun, A. Comprehensive analysis of heterotrimeric G-protein complex diversity and their interactions with GPCRs in solution. Proc. Natl Acad. Sci. USA 112, E1181–E1190 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Adjobo-Hermans, M. J. W. et al. Real-time visualization of heterotrimeric G protein Gq activation in living cells. BMC Biol. 9, 32 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bünemann, M., Frank, M. & Lohse, M. J. Gi protein activation in intact cells involves subunit rearrangement rather than dissociation. Proc. Natl Acad. Sci. USA 100, 16077–16082 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Klein, S., Reuveni, H. & Levitzki, A. Signal transduction by a nondissociable heterotrimeric yeast G protein. Proc. Natl Acad. Sci. USA 97, 3219–3223 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, S., Assmann, S. M. & Fedoroff, N. V. Characterization of the Arabidopsis heterotrimeric G protein. J. Biol. Chem. 283, 13913–13922 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Galés, C. et al. Probing the activation-promoted structural rearrangements in preassembled receptor-G protein complexes. Nat. Struct. Mol. Biol. 13, 778–786 (2006).

    Article  PubMed  Google Scholar 

  49. Tang, W. et al. Gβγ inhibits Gα GTPase-activating proteins by inhibition of Gα-GTP binding during stimulation by receptor. J. Biol. Chem. 281, 4746–4753 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Kano, H. et al. Structural mechanism underlying G protein family-specific regulation of G protein-gated inwardly rectifying potassium channel. Nat. Commun. 10, 2008 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rebois, R. V. et al. Heterotrimeric G proteins form stable complexes with adenylyl cyclase and Kir3.1 channels in living cells. J. Cell Sci. 119, 2807–2818 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Wittinghofer, A. Signaling mechanistics: aluminum fluoride for molecule of the year. Curr. Biol. 7, R682–R685 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Sprang, S. R. Activation of G proteins by GTP and the mechanism of Gα-catalyzed GTP hydrolysis. Biopolymers 105, 449–462 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sondek, J., Lambright, D. G., Noel, J. P., Hamm, H. E. & Sigler, P. B. GTPase mechanism of Gproteins from the 1.7-Å crystal structure of transducin α-GDP-AIF−4. Nature 372, 276–279 (1994).

    Article  CAS  PubMed  Google Scholar 

  55. Coleman, D. E. et al. Structures of active conformations of Gi alpha 1 and the mechanism of GTP hydrolysis. Science 265, 1405–1412 (1994).

    Article  CAS  PubMed  Google Scholar 

  56. Yin, J. et al. Structure of a D2 dopamine receptor–G-protein complex in a lipid membrane. Nature 584, 125–129 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang, M. et al. Cryo-EM structure of an activated GPCR–G protein complex in lipid nanodiscs. Nat. Struct. Mol. Biol. 28, 258–267 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ye, L., Van Eps, N., Zimmer, M., Ernst, O. P. & Scott Prosser, R. Activation of the A2A adenosine G-protein-coupled receptor by conformational selection. Nature 533, 265–268 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Furness, S. G. B. et al. Ligand-dependent modulation of G protein conformation alters drug efficacy. Cell 167, 739–749.e11 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Huang, S. K. et al. Allosteric modulation of the adenosine A2A receptor by cholesterol. eLife 11, e73901 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hagn, F., Etzkorn, M., Raschle, T. & Wagner, G. Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J. Am. Chem. Soc. 135, 1919–1925 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mondal, S., Hsiao, K. & Goueli, S. A. A homogenous bioluminescent system for measuring GTPase, GTPase activating protein, and guanine nucleotide exchange factor activities. Assay. Drug Dev. Technol. 13, 444–455 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ye, L. et al. Mechanistic insights into allosteric regulation of the A2A adenosine G protein-coupled receptor by physiological cations. Nat. Commun. 9, 1372 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Fowler, N. J., Sljoka, A. & Williamson, M. P. The accuracy of NMR protein structures in the Protein Data Bank. Structure 29, 1430–1439.e2 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Pichugin for NMR maintenance and L. Chen for technical support. This work was supported by the Canadian Institutes of Health Research (CIHR) Operating Grants MOP-43998 and PJT-183778 to R.S.P., CIHR Operating Grant PJT-159464 to O.P.E. and N.V.E., the National Institute of General Medical Sciences grants GM106990 and GM083118 to R.K.S. S.K.H. was supported by Alexander Graham Bell Canada Graduate Scholarship-Doctoral from NSERC. A.S. was supported by CREST, Japan Science and Technology Agency (JST), Japan, JPMJCR1402.

Author information

Authors and Affiliations

Authors

Contributions

S.K.H. and R.S.P. designed the research. S.K.H. and R.S.M.R. carried out expression and purification of various Gsα constructs. S.K.H. carried out expression and purification of A2AR. S.K.H. and A.P. carried out expression and purification of Gβγ. N.V.E., R.S.M.R. and S.K.H. carried out cloning for the various Gsα constructs. S.K.H. and R.S.M.R. performed the NMR experiments and the GTP hydrolysis experiments. L.-P.P. produced the double cysteine mutant of Gsα and carried out the FRET experiments. A.S. performed the RTA analysis. R.K.S. provided assistance with data interpretation and the manuscript. S.K.H. and R.S.P. prepared the manuscript. R.S.P. and O.P.E. supervised the project.

Corresponding authors

Correspondence to Adnan Sljoka or R. Scott Prosser.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available. Primary Handling Editors: Florian Ullrich and Katarzyna Ciazynska, in collaboration with the Nature Structural & Molecular Biology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3–7

Full NMR spectra (available via figshare).

Source Data Fig. 8

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S.K., Picard, LP., Rahmatullah, R.S.M. et al. Mapping the conformational landscape of the stimulatory heterotrimeric G protein. Nat Struct Mol Biol 30, 502–511 (2023). https://doi.org/10.1038/s41594-023-00957-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-023-00957-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing